当前位置: X-MOL 学术Robot. Comput.-Integr. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A machining accuracy informed adaptive positioning method for finish machining of assembly interfaces of large-scale aircraft components
Robotics and Computer-Integrated Manufacturing ( IF 10.4 ) Pub Date : 2020-06-24 , DOI: 10.1016/j.rcim.2020.102021
Wei Fan , Lianyu Zheng , Wei Ji , Xun Xu , Yuqian Lu , Lihui Wang

An assembly interface of a large-scale aircraft component is a joint surface to connect adjacent large components. To guarantee the final assembly accuracy of the large components, the assembly interface is finish machined on site before the final assembly to cut the observed machining allowance. Thus, aiming at realizing the high efficiency and high quality in the finish machining operation, in this paper we propose an adaptive positioning method that integrates comprehensive engineering constrains (including Positioning Accuracy Constraints (PACs) of the large component and Machining Accuracy Constraints (MACs) of the assembly interface). In this method, the key Measurement Points (MPs) of a component are assigned to obtain its initial pose. Then the measurement data and the initial pose are used as input data to obtain the optimal pose parameters of the component based on an improved Particle Swarm Optimization Simulated Annealing (PSO-SA) algorithm. The optimal pose parameters can provide data support for the adaptive positioning of the large component, the function of which is implemented based on IEC 61499 Function Block (FB) technology. Finally, a positioning experiment of a vertical tail of a large passenger aircraft is used to validate the proposed method. The experimental results illustrate that the proposed method can improve the efficiency and positioning accuracy of the large component, compared to the traditional method.



中文翻译:

大型飞机零部件装配接口精加工的加工精度告知自适应定位方法

大型飞机部件的装配接口是连接相邻大型部件的接合面。为了保证大型零件的最终装配精度,在最终装配之前,现场对装配接口进行精加工以削减观察到的加工余量。因此,为实现精加工中的高效率和高质量,本文提出了一种自适应定位方法,该方法将综合的工程约束(包括大型零件的定位精度约束(PAC)和加工精度约束(MAC))集成在一起装配接口)。在此方法中,分配组件的关键测量点(MP)以获得其初始姿态。然后,基于改进的粒子群优化模拟退火(PSO-SA)算法,将测量数据和初始姿态用作输入数据,以获取组件的最佳姿态参数。最佳姿态参数可以为大型组件的自适应定位提供数据支持,该组件的功能是基于IEC 61499功能块(FB)技术实现的。最后,通过对大型客机垂直尾翼进行定位实验来验证该方法的有效性。实验结果表明,与传统方法相比,该方法可以提高大型零件的效率和定位精度。最佳姿态参数可以为大型组件的自适应定位提供数据支持,大型​​组件的功能是基于IEC 61499功能块(FB)技术实现的。最后,通过对大型客机垂直尾翼进行定位实验来验证该方法的有效性。实验结果表明,与传统方法相比,该方法可以提高大型零件的效率和定位精度。最佳姿态参数可以为大型组件的自适应定位提供数据支持,大型​​组件的功能是基于IEC 61499功能块(FB)技术实现的。最后,通过对大型客机垂直尾翼进行定位实验来验证该方法的有效性。实验结果表明,与传统方法相比,该方法可以提高大型零件的效率和定位精度。

更新日期:2020-06-24
down
wechat
bug