当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fiber reorientation in hybrid helicoidal composites.
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.9 ) Pub Date : 2020-06-24 , DOI: 10.1016/j.jmbbm.2020.103914
Di Wang 1 , Alireza Zaheri 2 , Benjamin Russell 2 , Horacio Espinosa 2 , Pablo Zavattieri 1
Affiliation  

Naturally occurring biological materials with stiff fibers embedded in a ductile matrix are commonly known to achieve excellent balance between stiffness, strength and ductility. In particular, biological composite materials with helicoidal architecture have been shown to exhibit enhanced damage tolerance and increased impact energy absorption. However, the role of fiber reorientation inside the flexible matrix of helicoid composites on their mechanical behaviors have not yet been extensively investigated. In the present work, we introduce a Discontinuous Fiber Helicoid (DFH) composite inspired by both the helicoid microstructure in the cuticle of mantis shrimp and the nacreous architecture of the red abalone shell. We employ 3D printed specimens, analytical models and finite element models to analyze and quantify in-plane fiber reorientation in helicoid architectures with different geometrical features. We also introduce additional architectures, i.e., single unidirectional lamina and mono-balanced architectures, for comparison purposes. Compared with associated mono-balanced architectures, helicoid architectures exhibit less fiber reorientation values and lower values of strain stiffening. The explanation for this difference is addressed in terms of the measured in-plane deformation, due to uniaxial tensile of the laminae, correlated to lamina misorientation with respect to the loading direction and lay-up sequence.



中文翻译:

混合螺旋复合材料中的纤维取向。

具有硬质纤维嵌入延性基质中的天然存在的生物材料通常已知在硬度,强度和延展性之间实现出色的平衡。特别地,具有螺旋结构的生物复合材料已经显示出增强的损伤耐受性和增加的冲击能量吸收。然而,尚未对螺旋复合材料的柔性基质内部的纤维取向对其机械行为的作用进行广泛研究。在当前的工作中,我们介绍了一种不连续纤维螺旋状(DFH)复合材料,其灵感来自螳螂虾表皮中的螺旋状微结构和红色鲍鱼壳的珍珠质结构。我们使用3D打印的样本,分析模型和有限元模型,以分析和量化具有不同几何特征的螺旋结构中的面内纤维重新定向。为了比较起见,我们还介绍了其他架构,即单向单层和单平衡架构。与相关的单平衡架构相比,螺旋架构的光纤重新定向值更低,应变刚度更低。对于这种差异的解释是根据由于薄片的单轴拉伸而导致的测得的平面内变形来解决的,该变形与薄片相对于加载方向和铺层顺序的取向失调有关。出于比较目的。与相关的单平衡架构相比,螺旋架构的光纤重新定向值更低,应变刚度更低。对于这种差异的解释是根据由于薄片的单轴拉伸而导致的测得的平面内变形来解决的,该变形与相对于加载方向和铺层顺序的薄片错位相关。出于比较目的。与相关的单平衡架构相比,螺旋架构的光纤重新定向值较小,而应变刚度较低。对于这种差异的解释是根据由于薄片的单轴拉伸而导致的测得的平面内变形来解决的,该变形与相对于加载方向和铺层顺序的薄片错位相关。

更新日期:2020-06-24
down
wechat
bug