当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spatial Modulation of Biomolecules Immobilization by Fabrication of Hierarchically Structured PEG-Derived Brush Micropatterns: An Versatile Cellular Microarray Platform
Applied Surface Science ( IF 6.7 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.apsusc.2020.147056
Haili Zhao , Jin Sha , Tong Wu , Tao Chen , Xin Chen , Huajian Ji , Yu Wang , Huihao Zhu , Linsheng Xie , Yulu Ma

Abstract Microarray technology holds enormous promise in the development of various fields ranging from tissue engineering, regenerative medicine to high-throughput screening. Here, based on the digital micromirror device (DMD)-based spatiotemporal regulation of surface-initiated photoinduced atom transfer radical polymerization (Photo-ATRP) process, a flexible and versatile methodology was developed to fabricate a hierarchical microarray structure constituted with a homogeneous hyperbranched polyethylene glycol (PEG)-derived brush layer as anti-fouling background and an extension layer of square-grid poly(2-(2-azido-2-methyl-1-oxopropoxy) ethyl methacrylate) (PAMEMA) brushes micropatterns on the silicon substrate. The terminal azido groups on the side chains of PAMEMA brushes provide abundant reactive sites to realize the covalent immobilization of target biomolecules, including RGD peptide, fibronectin, BSA and streptavidin. The TOF-SIMS and fluorescence characterizations demonstrated the feasibility and efficiency of spatially modulating the density of surface-bound biomolecules through regulating the 3D architecture parameters of the PAMEMA brush micropatterns and consequentially the azido chemical functionality. Moreover, culture experiments of human bone-derived marrow stromal cells (BMSCs) and mouse L929 cells were conducted on the obtained hierarchical microarray structure in a high-throughput manner. The presented hierarchical microarray structure holds excellent potential as a high-throughput screening platform, allowing for the parallel assessment of cell-surface interactions.

中文翻译:

通过制造分层结构的 PEG 衍生刷微图案对生物分子固定的空间调制:多功能细胞微阵列平台

摘要 微阵列技术在从组织工程、再生医学到高通量筛选等各个领域的发展中具有巨大的前景。在这里,基于基于数字微镜器件 (DMD) 的表面引发光诱导原子转移自由基聚合 (Photo-ATRP) 过程的时空调节,开发了一种灵活且通用的方法来制造由均质超支化聚乙烯构成的分层微阵列结构乙二醇 (PEG) 衍生的刷层作为防污背景和方形网格聚(2-(2-叠氮基-2-甲基-1-氧代丙氧基)甲基丙烯酸乙酯)(PAMEMA)的延伸层在硅基板上刷微图案. PAMEMA 刷子侧链上的末端叠氮基团提供了丰富的反应位点,以实现目标生物分子的共价固定,包括 RGD 肽、纤连蛋白、BSA 和链霉亲和素。TOF-SIMS 和荧光表征证明了通过调节 PAMEMA 画笔微图案的 3D 结构参数以及随之而来的叠氮化学功能在空间上调节表面结合生物分子密度的可行性和效率。此外,以高通量方式对获得的分层微阵列结构进行了人骨髓基质细胞(BMSCs)和小鼠L929细胞的培养实验。所呈现的分层微阵列结构作为高通量筛选平台具有极好的潜力,
更新日期:2020-11-01
down
wechat
bug