当前位置: X-MOL 学术Bio-Medical Mater. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Moderate substrate stiffness induces vascular smooth muscle cell differentiation through cellular morphological and tensional changes.
Bio-Medical Materials and Engineering ( IF 1 ) Pub Date : 2020-07-09 , DOI: 10.3233/bme-201087
Kazuaki Nagayama 1 , Kouhei Nishimiya 1
Affiliation  

BACKGROUND:Vascular smooth muscle cells (VSMCs) are one of the main components of arterial walls and actively remodel the arterial walls in which they reside through biomechanical signals applied to themselves. Contractile or differentiated VSMCs have been observed in normal blood vessels. In pathological vascular conditions, they become dedifferentiated from contractile to non-contractile or synthetic cells, and a similar change is observed when VSMCs are placed in culture conditions. The mechanisms regulating VSMC differentiation remain unclear at this stage. OBJECTIVE:In this paper we investigated the effects of substrate stiffness on the morphology, intercellular tension, and differentiation of VSMCs. METHODS:Rat VSMCs were cultured on polyacrylamide (PA) gels, with elastic moduli of 15 kPa, 40 kPa, and 85 kPa, and PDMS substrate with elastic modulus of 1 MPa, and their morphology, intercellular tension, and contractile differentiation were assessed. RESULTS:Using fluorescence microscope image-based analysis and nano-indentation imaging with atomic force microscopy, we found that cell spreading and stiffening were induced by substrate stiffening in VSMCs. Interestingly, VSMCs on PA gel substrates with medium stiffness (40 kPa) showed significant elongation and shape polarization, and their 𝛼-SMA with F-actin cytoskeleton expression ratio was significantly higher than those of cells on other substrates. CONCLUSION:The results indicate an existing optimal substrate stiffness for promoting VSMC differentiation, and also indicate that cell shape polarization might be a key factor for VSMC differentiation.

中文翻译:

适度的基质刚度通过细胞形态和张力变化诱导血管平滑肌细胞分化。

背景:血管平滑肌细胞(VSMC)是动脉壁的主要组成部分之一,并通过施加于自身的生物力学信号主动重塑它们所驻留的动脉壁。在正常血管中已观察到收缩或分化的VSMC。在病理性血管条件下,它们会从收缩性细胞变为非收缩性或合成细胞,并且当将VSMC置于培养条件下时,也会观察到类似的变化。目前尚不清楚调节VSMC分化的机制。目的:本文研究了基底硬度对VSMCs的形态,细胞间张力和分化的影响。方法:将大鼠血管平滑肌细胞在聚丙烯酰胺(PA)凝胶上培养,弹性模量分别为15 kPa,40 kPa和85 kPa,评估了弹性模量为1 MPa的PDMS和PDMS底物的形态,细胞间张力和收缩分化。结果:通过基于荧光显微镜图像的分析和原子力显微镜的纳米压痕成像,我们发现VSMCs中的基底硬化可诱导细胞扩散和硬化。有趣的是,中等强度(40 kPa)的PA凝胶基质上的VSMC表现出明显的伸长和形状极化,其具有F-肌动蛋白细胞骨架表达率的𝛼-SMA明显高于其他基质上的细胞。结论:结果表明,现有的促进VSMC分化的最佳基质刚度,也表明细胞形状极化可能是VSMC分化的关键因素。评估细胞间张力和收缩分化。结果:通过基于荧光显微镜图像的分析和原子力显微镜的纳米压痕成像,我们发现VSMCs中的基底硬化可诱导细胞扩散和硬化。有趣的是,中等强度(40 kPa)的PA凝胶基质上的VSMC表现出明显的伸长和形状极化,其具有F-肌动蛋白细胞骨架表达率的𝛼-SMA明显高于其他基质上的细胞。结论:结果表明,现有的促进VSMC分化的最佳基质刚度,也表明细胞形状极化可能是VSMC分化的关键因素。评估细胞间张力和收缩分化。结果:通过基于荧光显微镜图像的分析和原子力显微镜的纳米压痕成像,我们发现VSMCs中的基底硬化可诱导细胞扩散和硬化。有趣的是,中等强度(40 kPa)的PA凝胶基质上的VSMC表现出明显的伸长和形状极化,其具有F-肌动蛋白细胞骨架表达率的𝛼-SMA明显高于其他基质上的细胞。结论:结果表明,现有的促进VSMC分化的最佳基质刚度,也表明细胞形状极化可能是VSMC分化的关键因素。使用基于荧光显微镜图像的分析和原子力显微镜的纳米压痕成像,我们发现细胞的扩散和硬化是由VSMC中的基底硬化引起的。有趣的是,中等强度(40 kPa)的PA凝胶基质上的VSMC表现出明显的伸长和形状极化,其具有F-肌动蛋白细胞骨架表达率的𝛼-SMA明显高于其他基质上的细胞。结论:结果表明,现有的促进VSMC分化的最佳基质刚度,也表明细胞形状极化可能是VSMC分化的关键因素。使用基于荧光显微镜图像的分析和原子力显微镜的纳米压痕成像,我们发现细胞的扩散和硬化是由VSMC中的基底硬化引起的。有趣的是,中等强度(40 kPa)的PA凝胶基质上的VSMC表现出明显的伸长和形状极化,其具有F-肌动蛋白细胞骨架表达率的𝛼-SMA明显高于其他基质上的细胞。结论:结果表明,现有的促进VSMC分化的最佳基质刚度,也表明细胞形状极化可能是VSMC分化的关键因素。具有中等刚度(40 kPa)的PA凝胶基质上的VSMC表现出显着的伸长和形状极化,其具有F-肌动蛋白细胞骨架表达比率的𝛼-SMA明显高于其他基质上的细胞。结论:结果表明,现有的促进VSMC分化的最佳基质刚度,也表明细胞形状极化可能是VSMC分化的关键因素。具有中等刚度(40 kPa)的PA凝胶基质上的VSMC表现出显着的伸长和形状极化,其具有F-肌动蛋白细胞骨架表达比率的𝛼-SMA明显高于其他基质上的细胞。结论:结果表明,现有的促进VSMC分化的最佳基质刚度,也表明细胞形状极化可能是VSMC分化的关键因素。
更新日期:2020-09-14
down
wechat
bug