当前位置: X-MOL 学术Acta Neurochir. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of the skull contour definition on Leksell Gamma Knife® Icon™ radiosurgery treatment planning.
Acta Neurochirurgica ( IF 2.4 ) Pub Date : 2020-06-18 , DOI: 10.1007/s00701-020-04458-8
Henri-Arthur Leroy 1, 2, 3 , Constantin Tuleasca 3, 4, 5, 6 , Michele Zeverino 7 , Elodie Drumez 8 , Nicolas Reyns 1, 2 , Marc Levivier 3
Affiliation  

INTRODUCTION The Gamma Knife® planning software (TMR 10, Elekta Instruments, AB, Sweden) affords two ways of defining the skull volume, the "historical" one using manual measurements (still perform in some centers) and the new one using image-based skull contours. Our objective was to assess the potential variation of the dose delivery calculation using consecutively in the same patients the two above-mentioned techniques. MATERIALS AND METHODS We included in this self-case-control study, 50 patients, treated with GKRS between July 2016 and January 2017 in Lausanne University Hospital, Switzerland, distributed among four groups: convexity targets (n = 18), deep-seated targets (n = 13), vestibular schwannomas (n = 11), and trigeminal neuralgias (n = 8). Each planning was performed consecutively with the 2 skull definition techniques. For each treatment, we recorded the beam-on time (min), target volume coverage (%), prescription isodose volume (cm3), and maximal dose (Gy) to the nearest organ at risk if relevant, according to each of the 2 skull definition techniques. The image-based contours were performed using CT scan segmentation, based upon a standardized windowing for all patients. RESULTS The median difference in beam-on time between manual measures and image-based contouring was + 0.45 min (IQR; 0.2-0.6) and was statistically significant (p < 0.0001), corresponding to an increase of 1.28% beam-on time per treatment, when using image-based contouring. The target location was not associated with beam-on time variation (p = 0.15). Regarding target volume coverage (p = 0.13), prescription isodose volume (p = 0.2), and maximal dose to organs at risk (p = 0.85), no statistical difference was reported between the two skull contour definition techniques. CONCLUSION The beam-on time significantly increased using image-based contouring, resulting in an increase of the total dose delivery per treatment with the new TMR 10 algorithm. Other dosimetric parameters did not differ significantly. This raises the question of other potential impacts. One is potential dose modulation that should be performed as an adjustment to new techniques developments. The second is how this changes the biologically equivalent dose per case, as related to an increased beam on time, delivered dose, etc., and how this potentially changes the radiobiological effects of GKRS in an individual patient.

中文翻译:

颅骨轮廓定义对Leksell GammaKnife®Icon™放射外科治疗计划的影响。

简介GammaKnife®规划软件(TMR 10,瑞典Elekta Instruments,AB)提供了两种定义颅骨体积的方法,“历史性”使用手动测量(仍在某些中心执行),而新的使用基于图像的测量。头骨轮廓。我们的目标是在同一患者中连续使用上述两种技术来评估剂量计算的潜在变化。材料与方法我们在这项自我病例对照研究中纳入了2016年7月至2017年1月在瑞士洛桑大学医院接受GKRS治疗的50例患者,分为四组:凸度目标(n = 18),深层目标(n = 13),前庭神经鞘瘤(n = 11)和三叉神经痛(n = 8)。每个计划都是使用2种头骨定义技术连续执行的。对于每一种治疗,我们根据2项中的每一项,记录了到达最近危险器官的放光时间(min),目标体积覆盖率(%),处方等剂量体积(cm3)和最大剂量(Gy)。头骨定义技术。基于CT分割的图像是基于所有患者的标准化窗口而执行的。结果手动测量与基于图像的轮廓之间的束开时间中值差异为+ 0.45分钟(IQR; 0.2-0.6),具有统计学意义(p <0.0001),每束束上光时间每增加1.28%使用基于图像的轮廓绘制时进行处理。目标位置与波束接通时间变化无关​​(p = 0.15)。关于目标体积覆盖率(p = 0.13),处方等剂量体积(p = 0.2)和对处于危险中的器官的最大剂量(p = 0.85),两种颅骨轮廓定义技术之间没有统计学差异的报道。结论使用基于图像的轮廓绘制时,束流照射时间显着增加,导致使用新的TMR 10算法每次治疗的总剂量输送增加。其他剂量参数没有显着差异。这就提出了其他潜在影响的问题。一种是潜在的剂量调制,应作为对新技术发展的调整来执行。第二个问题是,这如何改变每例患者的生物学等效剂量(与时间,发射剂量等的增加有关),以及这如何改变单个患者中GKRS的放射生物学效应。结论使用基于图像的轮廓绘制时,束流照射时间显着增加,导致使用新的TMR 10算法每次治疗的总剂量输送增加。其他剂量参数没有显着差异。这就提出了其他潜在影响的问题。一种是潜在的剂量调制,应作为对新技术发展的调整来执行。第二个问题是,这如何改变每例患者的生物学等效剂量(与时间,发射剂量等的增加有关),以及这如何改变单个患者中GKRS的放射生物学效应。结论使用基于图像的轮廓绘制时,束流照射时间显着增加,导致使用新的TMR 10算法每次治疗的总剂量输送增加。其他剂量参数没有显着差异。这就提出了其他潜在影响的问题。一种是潜在的剂量调制,应作为对新技术发展的调整来执行。第二个问题是,这如何改变每例患者的生物学等效剂量(与时间,发射剂量等的增加有关),以及这如何改变单个患者中GKRS的放射生物学效应。这就提出了其他潜在影响的问题。一种是潜在的剂量调制,应作为对新技术发展的调整来执行。第二个问题是,这如何改变每例患者的生物学等效剂量(与时间,发射剂量等的增加有关),以及这如何改变单个患者中GKRS的放射生物学效应。这就提出了其他潜在影响的问题。一种是潜在的剂量调制,应作为对新技术发展的调整来执行。第二个问题是,这如何改变每例患者的生物学等效剂量(与时间,发射剂量等的增加有关),以及这如何改变单个患者中GKRS的放射生物学效应。
更新日期:2020-06-18
down
wechat
bug