当前位置: X-MOL 学术ACS Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facile and Ultraclean Graphene-on-Glass Nanopores by Controlled Electrochemical Etching.
ACS Sensors ( IF 8.9 ) Pub Date : 2020-06-23 , DOI: 10.1021/acssensors.0c00883
Xiaoyan Zhang 1, 2 , Pauline M G van Deursen 1 , Wangyang Fu 2 , Grégory F Schneider 1
Affiliation  

A wide range of approaches have been explored to meet the challenges of graphene nanostructure fabrication, all requiring complex and high-end nanofabrication platform and suffering from surface contaminations, potentially giving electrical noise and increasing the thickness of the atomically thin graphene membrane. Here, with the use of an electrical pulse on a low-capacitance graphene-on-glass (GOG) membrane, we fabricated clean graphene nanopores on commercially available glass substrates with exceptionally low electrical noise. In situ liquid AFM studies and electrochemical measurements revealed that both graphene nanopore nucleation and growth stem from the electrochemical attack on carbon atoms at defect sites, ensuring the creation of a graphene nanopore. Strikingly, compared to conventional TEM drilled graphene nanopores on SiN supporting membranes, GOG nanopores featured an order-of-magnitude reduced broadband noise, which we ascribed to the electrochemical refreshing of graphene nanopore on mechanically stable glass chips with negligible parasitic capacitance (∼1 pF). Further experiments on double-stranded DNA translocations demonstrated a greatly reduced current noise, and also confirmed the activation of single nanopores. Therefore, the exceptionally low noise and ease of fabrication will facilitate the understanding of the fundamental property and the application of such atomically thin nanopore sensors.

中文翻译:

通过受控的电化学蚀刻,实现了简便,超净的玻璃上石墨烯纳米孔。

为了满足石墨烯纳米结构制造的挑战,已经探索了各种各样的方法,所有这些方法都需要复杂且高端的纳米制造平台,并且遭受表面污染,可能产生电噪声并增加原子薄的石墨烯膜的厚度。在这里,通过在低电容玻璃上石墨烯(GOG)膜上使用电脉冲,我们在市售的玻璃基板上以极低的电噪声制造了干净的石墨烯纳米孔。原位液体原子力显微镜研究和电化学测量表明,石墨烯纳米孔的成核和生长均源于对缺陷部位碳原子的电化学攻击,从而确保了石墨烯纳米孔的产生。令人惊讶的是,与SiN支撑膜上的传统TEM钻孔石墨烯纳米孔相比,GOG纳米孔的宽带噪声降低了一个数量级,这归因于石墨烯纳米孔在机械稳定的玻璃芯片上的电化学更新,其寄生电容可忽略不计(约1 pF )。对双链DNA易位的进一步实验表明电流噪声大大降低,并且还证实了单个纳米孔的激活。因此,
更新日期:2020-08-28
down
wechat
bug