当前位置: X-MOL 学术Nanoscale Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancement of exciton emission in WS2 based on the Kerker effect from the mode engineering of individual Si nanostripes.
Nanoscale Horizons ( IF 9.7 ) Pub Date : 2020-06-22 , DOI: 10.1039/d0nh00189a
Jiahao Yan 1 , Zhaoqiang Zheng 2 , Zaizhu Lou 1 , Juan Li 1 , Bijun Mao 1 , Baojun Li 1
Affiliation  

Coupling between nanostructures and excitons has attracted great attention for potential applications in quantum information technology. Compared with plasmonic platforms, all-dielectric nanostructures with Mie resonances are more practical because of low-loss, low-cost and CMOS compatibility. However, weak field enhancements in single element dielectric nanostructures hinder their applications in both strong and weak coupling regimes. The Kerker effect arising from the far-field electro-magnetic interactions in dielectric nanostructures brings a new mechanism to realize effective coupling with excitons. Until now, it still remains unsolved whether effective Mie-exciton coupling can be realized based on pure far-field Kerker effect. Therefore, we proposed a silicon-on-insulator (SOI) integrated Mie resonator with a 135 nm top oxide layer to exclude the near-field coupling between excitons and silicon (Si) nanostripes. Through tuning the widths of Si nanostripes to obtain highly directional photoluminescence (PL) emission under Kerker conditions, strong PL enhancements can be observed, whose enhancement factors are comparable to the reported best performances of single all-dielectric or even plasmonic nanostructures coupling with 2D excitons. Our findings bring new strategies for strong light–matter interactions with near-zero heating loss and make it possible to construct 2D materials–silicon hybrid integration for future nanophotonic and optoelectronic devices.

中文翻译:

基于单个Si纳米带的模式工程的Kerker效应增强WS2中的激子发射。

纳米结构和激子之间的耦合已吸引了量子信息技术潜在应用的极大关注。与等离子体平台相比,具有米氏共振的全介电纳米结构因其低损耗,低成本和CMOS兼容性而更加实用。然而,单元素电介质纳米结构中弱场增强阻碍了它们在强耦合和弱耦合机制中的应用。由介电纳米结构中的远场电磁相互作用引起的克尔效应带来了一种实现与激子有效耦合的新机制。迄今为止,是否能够基于纯远场柯克效应实现有效的米氏-激子耦合仍是一个未知数。因此,我们提出了一个具有135 nm顶氧化层的绝缘体上硅(SOI)集成Mie谐振器,以消除激子和硅(Si)纳米带之间的近场耦合。通过调整硅纳米带的宽度以在克尔克条件下获得高度定向的光致发光(PL)发射,可以观察到PL的强烈增强,其增强因子可与单全电介质或等离激元纳米结构与二维激子耦合的最佳性能相媲美。 。我们的发现提出了新的策略,以实现光-物质相互作用强且热损失接近零,并使构建2D材料-硅杂化集成成为可能,从而适用于未来的纳米光子和光电器件。通过调整硅纳米带的宽度以在克尔克条件下获得高度定向的光致发光(PL)发射,可以观察到PL的强烈增强,其增强因子可与报道的单全电介质或等离激元纳米结构与2D激子耦合的最佳性能相媲美。 。我们的发现提出了新的策略,以实现光-物质相互作用强且热损失接近零,并使构建2D材料-硅杂化集成成为可能,从而适用于未来的纳米光子和光电器件。通过调整硅纳米带的宽度以在克尔克条件下获得高度定向的光致发光(PL)发射,可以观察到PL的强烈增强,其增强因子可与报道的单全电介质或等离激元纳米结构与2D激子耦合的最佳性能相媲美。 。我们的发现提出了新的策略,以实现光-物质相互作用强且热损失接近零,并使构建2D材料-硅杂化集成成为可能,从而适用于未来的纳米光子和光电器件。
更新日期:2020-06-22
down
wechat
bug