当前位置: X-MOL 学术J. Micromech. Microeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wafer-Bonded Surface Plasmon Waveguide Sensors with In-Plane Microfluidic Interfaces
Journal of Micromechanics and Microengineering ( IF 2.3 ) Pub Date : 2020-06-22 , DOI: 10.1088/1361-6439/ab92e9
Muhammad Asif 1, 2 , Oleksiy Krupin 2, 3 , Wei Ru Wong 4 , Zohreh Hirbodvash 2, 5 , Ewa Lisicka-Skrzek 2 , Choloong Hahn 2 , R Niall Tait 1 , Pierre Berini 2, 3, 5
Affiliation  

Biosensors exploiting long-range surface plasmon polariton (LRSPP) waveguides comprised of Au stripes embedded in Cytop with integrated and encapsulated microfluidic channels are fabricated and demonstrated. A fabrication approach was devised where the lower cladding and recessed Au stripes are fabricated on a Si substrate, and the upper cladding and microfluidic channels are fabricated on a glass substrate, followed by wafer bonding to assemble the wafers into complete structures. The bond is centered over the full length of the optical path, yet no evidence of optical scattering or excess loss due to the bond could be observed, and no evidence of a bonding interface could be discerned from high-magnification cross-sectional images. We also demonstrate wafer-scale fabrication of in-plane microfluidic inlets and outlets, along with a fixture for fluidic edge coupling that provides sealed interfaces to external fluidic tubing and components. In-plane microfluidic interfaces are automatically defined along chip facets upon wafer dicing, precluding the need to drill through holes in lids. The performance of the chips was assessed by measuring the attenuation of LRSPPs on fully cladded reference waveguides, on waveguides passing through microfluidic channels, and by measuring the response of sensors to changes in refractive index produced by injecting various sensing solutions. Our fabrication approach based on wafer bonding and in-plane fluidic interfacing is compelling for low-cost high-volume manufacturing.

中文翻译:

具有面内微流体接口的晶圆键合表面等离子体波导传感器

制造和演示了利用长程表面等离子体激元 (LRSPP) 波导的生物传感器,该波导由嵌入 Cytop 中的 Au 条纹组成,具有集成和封装的微流体通道。设计了一种制造方法,其中下部包层和凹进的 Au 条纹在 Si 基板上制造,上部包层和微流体通道在玻璃基板上制造,然后通过晶片键合将晶片组装成完整的结构。键合在光路的整个长度上居中,但没有观察到由于键合引起的光学散射或过度损耗的迹象,并且从高倍放大的横截面图像中也看不到键合界面的迹象。我们还展示了平面微流体入口和出口的晶圆级制造,以及用于流体边缘耦合的夹具,为外部流体管道和组件提供密封接口。平面内微流体界面在晶圆切割时沿芯片面自动定义,无需在盖子上钻通孔。芯片的性能是通过测量 LRSPP 在全包层参考波导上、通过微流体通道的波导上的衰减,以及通过测量传感器对注入各种传感溶液产生的折射率变化的响应来评估的。我们基于晶圆键合和面内流体接口的制造方法对于低成本大批量制造具有吸引力。平面内微流体界面在晶圆切割时沿芯片面自动定义,无需在盖子上钻通孔。芯片的性能是通过测量 LRSPP 在全包层参考波导上、通过微流体通道的波导上的衰减,以及通过测量传感器对注入各种传感溶液产生的折射率变化的响应来评估的。我们基于晶圆键合和面内流体接口的制造方法对于低成本大批量制造具有吸引力。平面内微流体界面在晶圆切割时沿芯片面自动定义,无需在盖子上钻通孔。通过测量 LRSPP 在全包层参考波导、通过微流体通道的波导上的衰减,以及通过测量传感器对注入各种传感溶液产生的折射率变化的响应来评估芯片的性能。我们基于晶圆键合和面内流体接口的制造方法对于低成本大批量制造具有吸引力。并通过测量传感器对注入各种传感溶液产生的折射率变化的响应。我们基于晶圆键合和面内流体接口的制造方法对于低成本大批量制造具有吸引力。并通过测量传感器对注入各种传感溶液产生的折射率变化的响应。我们基于晶圆键合和面内流体接口的制造方法对于低成本大批量制造具有吸引力。
更新日期:2020-06-22
down
wechat
bug