当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biodegradable and Insoluble Cellulose Photonic Crystals and Metasurfaces.
ACS Nano ( IF 17.1 ) Pub Date : 2020-06-19 , DOI: 10.1021/acsnano.0c03224
Vincenzo Caligiuri 1, 2, 3 , Giacomo Tedeschi 1 , Milan Palei 1, 4 , Mario Miscuglio 5 , Beatriz Martin-Garcia 1, 6 , Susana Guzman-Puyol 1, 7 , Mehdi Keshavarz Hedayati 8 , Anders Kristensen 9 , Athanassia Athanassiou 1 , Roberto Cingolani 1 , Volker J Sorger 5 , Marco Salerno 10 , Francesco Bonaccorso 1, 11 , Roman Krahne 1 , José Alejandro Heredia-Guerrero 1, 7
Affiliation  

The replacement of plastic with eco-friendly and biodegradable materials is one of the most stringent environmental challenges. In this respect, cellulose stands out as a biodegradable polymer. However, a significant challenge is to obtain biodegradable materials for high-end photonics that are robust in humid environments. Here, we demonstrate the fabrication of high-quality micro- and nanoscale photonic and plasmonic structures via replica molding using pure cellulose and a blended version with nonedible agro-wastes. Both materials are biodegradable in soil and seawater according to the ISO 17556 standard. The pure cellulose films are transparent in the vis–NIR spectrum, having a refractive index similar to glass. The microstructured photonic crystals show high-quality diffractive properties that are maintained under extended exposure to water. Nanostructuring the cellulose transforms it to a biodegradable metasurface manifesting bright structural colors. A subsequent deposition of Ag endowed the metasurface with plasmonic properties used to produce plasmonic colors and for surface-enhanced Raman scattering.

中文翻译:

可生物降解和不可溶的纤维素光子晶体和超表面。

用环保和可生物降解的材料代替塑料是最严格的环境挑战之一。在这方面,纤维素是可生物降解的聚合物。但是,一项重大挑战是要获得在潮湿环境中坚固耐用的高端光子学可生物降解材料。在这里,我们展示了高品质微和纳米光子和等离子体结构的制造通过使用纯纤维素和非食用性农业废料的混合型进行仿制。两种材料均可根据ISO 17556标准在土壤和海水中进行生物降解。纯纤维素膜在vis-NIR光谱中是透明的,其折射率与玻璃相似。微结构的光子晶体显示出高质量的衍射特性,该特性在长时间暴露于水的情况下得以保持。纤维素的纳米结构将其转变为可生物降解的亚表面,表现出明亮的结构颜色。随后的银沉积赋予超颖表面具有等离子特性,该等离子特性用于产生等离子颜色和用于表面增强拉曼散射。
更新日期:2020-08-25
down
wechat
bug