当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics.
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2020-06-22 , DOI: 10.1038/s41565-020-0704-7
Jing Xiao 1, 2 , Hualin Zhan 1 , Xiao Wang 1 , Zai-Quan Xu 2, 3 , Zhiyuan Xiong 1 , Ke Zhang 2 , George P Simon 2 , Jefferson Zhe Liu 4 , Dan Li 1, 2
Affiliation  

Graphene-based nanoporous materials have been extensively explored as high-capacity ion electrosorption electrodes for supercapacitors. However, little attention has been paid to exploiting the interactions between electrons that reside in the graphene lattice and the ions adsorbed between the individual graphene sheets. Here we report that the electronic conductance of a multilayered reduced graphene oxide membrane, when used as a supercapacitor electrode, can be modulated by the ionic charging state of the membrane, which gives rise to a collective electrolyte gating effect. This gating effect provides an in-operando approach for probing the charging dynamics of supercapacitors electrically. Using this approach, we observed a pore-size-dependent ionic hysteresis or memory effect in reduced graphene oxide membranes when the interlayer distance is comparable to the ion diameter. Our results may stimulate the design of novel devices based on the ion–electron interactions under nanoconfinement.



中文翻译:

石墨烯基超级电容器中的电解质门控及其在探测纳米约束充电动力学中的用途。

基于石墨烯的纳米多孔材料已被广泛用作超级电容器的高容量离子电吸附电极。然而,很少有人关注利用驻留在石墨烯晶格中的电子与吸附在各个石墨烯片之间的离子之间的相互作用。在这里我们报告说,多层还原氧化石墨烯膜的电子电导率,当用作超级电容器电极时,可以通过膜的离子带电状态进行调节,从而产生集体的电解质门控效果。这种门控效应提供了一种操作上方法,用于以电学方式探测超级电容器的充电动力学。使用这种方法,当层间距离与离子直径相当时,我们观察到了还原石墨烯氧化物膜中的孔径依赖性离子滞后或记忆效应。我们的结果可能会刺激基于纳米约束的离子-电子相互作用的新型器件的设计。

更新日期:2020-06-23
down
wechat
bug