当前位置: X-MOL 学术Solid State Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mg-doped Na[Ni1/3Fe1/3Mn1/3]O2 with enhanced cycle stability as a cathode material for sodium-ion batteries
Solid State Sciences ( IF 3.5 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.solidstatesciences.2020.106334
Kyu-Nam Jung , Jae-Yong Choi , Hyun-Seop Shin , Ha Tran Huu , Won Bin Im , Jong-Won Lee

Abstract O3-type Na[Ni1/3Fe1/3Mn1/3]O2 (NaNFM) is considered as a promising cathode material for sodium-ion batteries; however, its poor cycling stability is still a concern. In this study, we discuss the structural, surface and electrochemical properties of Mg-doped NaMgx[Ni1/3Fe1/3Mn1/3]1–xO2 materials and their enhanced cycling performance. The variations of the lattice parameters by substitution of Mg ion and its uniform distribution on the particles are confirmed using X-ray diffraction and transmission electron microscopy. The optimized NaMg0.05[Ni1/3Fe1/3Mn1/3]0.95O2 delivers a discharge capacity of ~120 mAh g−1 and has a diffusion coefficient of Na ranging from 6.5 × 10−13 to 2.7 × 10−10 cm2 s−1. In particular, it shows a relatively high discharge capacity of 42 mAh g−1 even at a high current density of 1200 mA g−1 and exhibits considerably enhanced cycling stability (77% capacity retention after 50 cycles), compared with that of the undoped NaNFM (40%). Based on structural and electrochemical analyses, it is suggested that Mg doping can effectively suppress the irreversible structural degradation and induce more reversible phase transitions; this results in a more stable cycling performance of the Mg-doped NaNFM than that of undoped NaNFM.

中文翻译:

具有增强循环稳定性的镁掺杂 Na[Ni1/3Fe1/3Mn1/3]O2 作为钠离子电池的正极材料

摘要 O3型Na[Ni1/3Fe1/3Mn1/3]O2(NaNFM)被认为是一种很有前景的钠离子电池正极材料。然而,其较差的循环稳定性仍然是一个问题。在本研究中,我们讨论了掺杂 Mg 的 NaMgx[Ni1/3Fe1/3Mn1/3]1-xO2 材料的结构、表面和电化学性能及其增强的循环性能。使用 X 射线衍射和透射电子显微镜证实了由 Mg 离子取代引起的晶格参数的变化及其在颗粒上的均匀分布。优化后的 NaMg0.05[Ni1/3Fe1/3Mn1/3]0.95O2 的放电容量约为 120 mAh g-1,Na 的扩散系数范围为 6.5 × 10-13 至 2.7 × 10-10 cm2 s- 1. 特别是,即使在 1200 mA g-1 的高电流密度下,它也显示出 42 mAh g-1 的相对高放电容量,并且与未掺杂的 NaNFM(40 %)。基于结构和电化学分析,表明Mg掺杂可以有效抑制不可逆结构退化并诱导更多可逆相变;这导致 Mg 掺杂的 NaNFM 的循环性能比未掺杂的 NaNFM 更稳定。
更新日期:2020-08-01
down
wechat
bug