当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries
Nano Energy ( IF 17.6 ) Pub Date : 2020-06-20 , DOI: 10.1016/j.nanoen.2020.104997
Xiangsi Liu , Guiming Zhong , Zhumei Xiao , Bizhu Zheng , Wenhua Zuo , Ke Zhou , Haodong Liu , Ziteng Liang , Yuxuan Xiang , Zirong Chen , Gregorio F. Ortiz , Riqiang Fu , Yong Yang

Mn-based layered oxides as one of the most promising and cost-effective cathode candidates for sodium-ion batteries still face great challenge to achieve high capacity with long cycle life under high-rate current simultaneously. In this work, we propose an effective strategy by a combination of liquid N2 quenching and aliovalent doping to get new layered cathode materials. As evidenced by in-situ synchrotron X-ray diffraction, time-of-flight powder neutron diffraction and solid-state 23Na nuclear magnetic resonance techniques, the proposed synthesis methods allow tuning the transition metal ions vacancies and enhance Mn4+/Mn3+ redox center of P2-type Mn-based materials. Our results demonstrate that such an optimized structure significantly enhances the deliverable capacity, Na+ mobility and electronic conductivity of the materials. Furthermore, the effects of aliovalent doping elements and different cooling approaches on the long-range structure, local environment and electrochemical performance are comprehensively studied by comparing a wide range of doped Na0.67MxMn1-xO2 (M = Li, Mg, Al, Fe) materials. The optimized Na0.67Al0.1Fe0.05Mn0.85O2 material exhibits a remarkably high initial capacity of 202 mAh g−1 among ever reported P2-type layered oxides within 2–4 V, a stable capacity retention of 81% after 600 cycles and outstanding rate capability of the specific capacity up to 122 mAh g−1 at 1200 mA g−1.



中文翻译:

用于高速率钠离子电池的空位可控的含铝和铁的锰基层状阴极

锰基层状氧化物作为钠离子电池最有前途和最具成本效益的阴极候选材料之一,在同时在高倍率电流下实现高容量和长循环寿命方面仍然面临着巨大挑战。在这项工作中,我们提出了一种有效的策略,即结合液态N 2淬灭和异价掺杂来获得新的分层阴极材料。如原位同步加速器X射线衍射,飞行时间粉末中子衍射和固态23 Na核磁共振技术所证明的,所提出的合成方法可调节过渡金属离子的空位并增强Mn 4+ / Mn 3 +P2型Mn基材料的氧化还原中心。我们的结果表明,这种优化的结构显着增强了材料的可传递容量,Na +迁移率和电子导电性。此外,通过比较各种掺杂的Na 0.67 M x Mn 1-x O 2(M = Li,Mg),广泛研究了铝价掺杂元素和不同的冷却方式对长程结构,局部环境和电化学性能的影响。,Al,Fe)材料。优化的Na 0.67 Al 0.1 Fe 0.05 Mn 0.85 O 2该材料在2–4 V范围内的P2型层状氧化物中表现出202 mAh g -1的极高初始容量,在600次循环后稳定的容量保持率达81%,比容量高达122 mAh g时具有出色的速率能力-1在1200 mA g -1

更新日期:2020-07-03
down
wechat
bug