当前位置: X-MOL 学术Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental study of steam and carbon dioxide microwave plasma for advanced thermal treatment application
Energy ( IF 9 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.energy.2020.118086
S. Vecten , M. Wilkinson , A. Martin , A. Dexter , N. Bimbo , R. Dawson , B. Herbert

Abstract Pollution reduction from waste management and energy generation is necessary to mitigate climate change and is one of the major challenges of the 21st century. This can be achieved through the development of innovative energy recovery technologies from biomass and wastes, such as microwave plasma gasification. An envelope of stable CO2 plasma operation is described, by varying working gas flow rate at applied microwave powers between 1 and 6 kW, whereas H2O plasma operation is possible with flow rate ranging from 20 to 50 g/min and microwave powers between 2.5 and 6 kW. The temperature generated in a large chamber connected to the plasma torch is recorded, reaching up to 850 °C, showing a heterogeneous temperature distribution. In addition, optical emission spectroscopy measurements provide an insight into plasma chemistry and demonstrate the dissociation of CO2 and H2O molecules at extremely high temperatures of up to 6300 °C assuming local thermodynamic equilibrium. The experimental results demonstrate that the microwave plasma torch provides an ideal environment for gasification with high temperature and very chemically reactive species. This study provides valuable information for the design of microwave plasma gasification reactors with great potential for effective solid feedstock conversion into high quality syngas for energy production.

中文翻译:

蒸汽和二氧化碳微波等离子体用于深度热处理的实验研究

摘要 减少废物管理和能源生产造成的污染是缓解气候变化的必要条件,也是 21 世纪的主要挑战之一。这可以通过开发生物质和废物的创新能量回收技术来实现,例如微波等离子气化。通过在 1 到 6 kW 之间的应用微波功率下改变工作气体流速,描述了稳定的 CO2 等离子体操作的范围,而 H2O 等离子体操作是可能的,流速范围为 20 到 50 g/min,微波功率范围为 2.5 到 6千瓦。记录与等离子炬相连的大腔室中产生的温度,最高可达 850 °C,显示出不均匀的温度分布。此外,光学发射光谱测量提供了对等离子体化学的深入了解,并证明了假设局部热力学平衡,CO2 和 H2O 分子在高达 6300 °C 的极高温度下分解。实验结果表明,微波等离子炬为高温气化和化学反应性很强的物种提供了理想的环境。该研究为微波等离子体气化反应器的设计提供了有价值的信息,该反应器具有将固体原料有效转化为用于能源生产的高质量合成气的巨大潜力。实验结果表明,微波等离子炬为高温气化和化学反应性很强的物种提供了理想的环境。该研究为微波等离子体气化反应器的设计提供了有价值的信息,该反应器具有将固体原料有效转化为用于能源生产的高质量合成气的巨大潜力。实验结果表明,微波等离子炬为高温气化和化学反应性很强的物种提供了理想的环境。该研究为微波等离子体气化反应器的设计提供了有价值的信息,该反应器具有将固体原料有效转化为用于能源生产的高质量合成气的巨大潜力。
更新日期:2020-09-01
down
wechat
bug