当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Layered structure of alumina/graphene-augmented-inorganic-nanofibers with directional electrical conductivity
Carbon ( IF 10.9 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.carbon.2020.06.038
Ali Saffar Shamshirgar , Rocio Estefania Rojas Hernández , Girish C. Tewari , Roman Ivanov , Valdek Mikli , Maarit Karppinen , Irina Hussainova

Abstract Implementation of layered structures with strong nanoscale optimized interfaces, enables engineering of materials with functional properties. In this work, anisotropic functional multi-layered structures are produced by integration of a thin hybrid inter-layer of graphene-augmented-nanofibers/alumina into α-alumina through an ex-situ strategy of precipitating the tailored hybrid from a solution. Spark plasma sintering was used to consolidate the layered structures at 1150 and 1450 °C under 75 and 50 MPa pressure. Raman spectroscopy suggests presence of C–H bonds and sp3 hybridization for the samples sintered at 1150 °C, while graphene structure is purified at the sintering temperature of 1450 °C. The multilayer structures demonstrate a high in-plane electrical conductivity which can be modulated, ranging from 300 to 1800 S m−1 as a function of the interlayer thickness and the carbon content. A p-type conduction at room temperature and n-type down to 4 K in graphene-augmented nano-fillers was observed in Hall measurement. However, the multilayered systems display a p-type conduction in the entire temperature range. Hardness was preserved despite the high concentration of the graphene-augmented nano-fillers in the hybrid interlayer leaving a highest value of ∼22 GPa. The results have the potential to fuel the development of functional electronic enclosures with additional functionalities such as electromagnetic interference shielding.

中文翻译:

具有定向导电性的氧化铝/石墨烯增强无机纳米纤维的层状结构

摘要 具有强纳米级优化界面的分层结构的实现,使具有功能特性的材料工程成为可能。在这项工作中,各向异性功能多层结构是通过将石墨烯增强纳米纤维/氧化铝的薄混合夹层集成到 α-氧化铝中,通过从溶液中沉淀定制的混合体的异位策略来产生的。在 1150 和 1450 °C、75 和 50 MPa 压力下,使用火花等离子体烧结来固结层状结构。拉曼光谱表明在 1150°C 下烧结的样品存在 C-H 键和 sp3 杂化,而石墨烯结构在 1450°C 的烧结温度下被纯化。多层结构表现出可以调节的高面内导电性,范围从 300 到 1800 S m-1,作为夹层厚度和碳含量的函数。在霍尔测量中观察到石墨烯增强纳米填料在室温下的 p 型传导和低至 4 K 的 n 型传导。然而,多层系统在整个温度范围内都显示出 p 型传导。尽管混合夹层中石墨烯增强的纳米填料的浓度很高,但硬度仍保持不变,最高值约为 22 GPa。结果有可能推动具有附加功能(例如电磁干扰屏蔽)的功能性电子外壳的开发。多层系统在整个温度范围内都显示出 p 型传导。尽管混合夹层中石墨烯增强的纳米填料的浓度很高,但硬度仍保持不变,最高值约为 22 GPa。结果有可能推动具有附加功能(例如电磁干扰屏蔽)的功能性电子外壳的开发。多层系统在整个温度范围内都显示出 p 型传导。尽管混合夹层中石墨烯增强的纳米填料的浓度很高,但硬度仍保持不变,最高值约为 22 GPa。结果有可能推动具有附加功能(例如电磁干扰屏蔽)的功能性电子外壳的开发。
更新日期:2020-10-01
down
wechat
bug