当前位置: X-MOL 学术Appl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy efficiency analysis of outdoor standalone photovoltaic-powered photobioreactors coproducing lipid-rich algal biomass and electricity
Applied Energy ( IF 11.2 ) Pub Date : 2020-06-20 , DOI: 10.1016/j.apenergy.2020.115403
Emeka G. Nwoba , David A. Parlevliet , Damian W. Laird , Kamal Alameh , Julien Louveau , Jeremy Pruvost , Navid R. Moheimani

The need for thermal regulation in microalgal photobioreactors is a significant impediment to their large-scale adoption. The energy costs associated with thermal regulation alone can easily result in a negative energy balance. Self-sustaining photovoltaic powered photobioreactors that do not require cooling systems provide an opportunity to maximize biomass productivity, generate local electricity, reduce thermal regulation requirements, and significantly improve the energy balance of the system. Net energy analysis of a spectrally-selective, insulated-glazed photovoltaic photobioreactor (IGP) with an integrated capability for renewable electricity generation used to cultivate Nannochloropsis sp. without freshwater-based cooling resulted in a net energy ratio of 2.96, a figure comparable to agricultural bio-oil crops such as Jatropha and soybean. Experimental data from pilot-scale operation of this novel photobioreactor producing Nannochloropsis biomass under outdoor conditions was extrapolated to a 1-ha IGP installation. Annual biomass productivity reached 66.0-tons dry weight ha−1, equivalent to overall energy output of 1696.2 GJ ha−1. The integrated semi-transparent photovoltaic panels generated an additional 1126.8 GJ ha−1 yr−1 (313.0 MWh ha−1 yr−1). Energy demands from plant building materials, machinery, fertilizers, plant operations, and biomass harvesting constituted total energy input with a combined value of 707.3 GJ ha−1 yr−1. Comparison with a conventional photobioreactor requiring passive evaporative cooling showed novel photobioreactor had a 73% greater net energy ratio. Nannochloropsis cultivation in IGP system ensured co-production of lipid and protein of 34.7 and 25.7-tons ha−1 yr−1, respectively. These results suggest that this novel photobioreactor could be a viable and sustainable biomass production technology for mass microalgal cultivation.



中文翻译:

共同生产富含脂质的藻类生物质和电力的户外独立光伏供电的光生物反应器的能效分析

微藻光生物反应器中对热调节的需求严重阻碍了其大规模采用。仅与热调节相关的能源成本很容易导致能源负平衡。不需要冷却系统的自持光伏供电的光生物反应器提供了一个机会,可以最大限度地提高生物质生产力,产生局部电力,降低热调节要求并显着改善系统的能量平衡。光谱选择性,绝缘玻璃光伏光生物反应器(IGP)的净能分析,该生物反应器具有用于培养拟南芥的可再生发电的综合功能sp。如果不使用淡水冷却,则净能量比为2.96,这一数字可与麻风树和大豆等农业生物油作物相媲美。该新型光生物反应器在室外条件下生产Nannochloropsis生物质的中试规模的实验数据外推至1公顷IGP设备。年生物量生产力达到66.0吨干重ha -1,相当于1696.2 GJ ha -1的总能量输出。集成的半透明光伏面板产生了额外的1126.8 GJ ha -1 yr -1(313.0 MWh ha -1 yr -1)。来自植物建材,机械,肥料,植物操作和生物质收获的能量需求构成了总能量输入,其总值为707.3 GJ ha -1 yr -1。与需要被动蒸发冷却的常规光生物反应器的比较表明,新型光生物反应器的净能量比提高了73%。在IGP系统中进行的拟南芥栽培确保了脂质和蛋白质的协同生产,分别为34.7吨和25.7吨ha -1 yr -1。这些结果表明,这种新型的光生物反应器可能是一种可行且可持续的生物量生产技术,可用于大规模微藻培养。

更新日期:2020-06-23
down
wechat
bug