当前位置: X-MOL 学术IEEE Open J. Eng. Med. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Structured Cleaving Mesh for Bioheat Transfer Application
IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2020-05-14 , DOI: 10.1109/ojemb.2020.2994557
Rohan Amare 1 , Amir A Bahadori 2, 3 , Steven Eckels 3, 4
Affiliation  

Goal: The thermoregulation mechanism is a complex system that executes vital processes in the human body. Various models have been proposed to simulate the thermoregulatory response of an adult human to environmental stimuli. However, these models generally rely on stylized phantoms that lack the anatomical details of voxel phantoms used in radiation dosimetry and shielding research. The goal of this work is to introduce voxel phantoms to thermoregulation research by modeling the physical energy exchange between tissue and its surroundings, discuss a specific challenge associated with voxel phantoms, propose a method to address this challenge, and demonstrate its application. Method: One of the major challenges in using voxel phantoms is the stair-step effect on the surface of the voxelized domain. This effect causes over-estimation of surface area, accurate knowledge of which is critical for modeling heat exchanging systems. A methodology to generate a voxel domain from medical imaging data and reduce error in the surface area caused by the stair-step effect is presented. The methodology, based on a structured mesh and finite-volume method, is demonstrated with tumors generated from magnetic resonance imaging (MRI) scans of mice. Results: The methodology discussed in the paper shows a decrease in surface area over-estimation from 50% to 15% for a sphere and 47% to 17% for tumor models generated directly from MRI scans. Conclusion: This work provides a direct method to generate a smoother domain from medical imaging data and reducing surface area error in a voxelized domain. The technique presented is independent of domain material, including tissue type, and can be extended to any homogeneous or inhomogeneous domain. The increase in surface area accuracy obtained by smoothing the voxel domain results in more accurate temperature estimates in heat transfer simulation.

中文翻译:

用于生物传热应用的结构化切割网

目标:体温调节机制是一个复杂的系统,在人体中执行重要的过程。已经提出了各种模型来模拟成年人对环境刺激的体温调节反应。然而,这些模型通常依赖于风格化的模型,缺乏辐射剂量学和屏蔽研究中使用的体素模型的解剖细节。这项工作的目的是通过对组织与其周围环境之间的物理能量交换进行建模,将体素体模引入体温调节研究,讨论与体素体模相关的特定挑战,提出解决这一挑战的方法,并展示其应用。方法:使用体素模型的主要挑战之一是体素化域表面的阶梯效应。这种效应会导致对表面积的高估,准确了解表面积对于热交换系统的建模至关重要。提出了一种从医学成像数据生成体素域并减少由阶梯效应引起的表面积误差的方法。该方法基于结构化网格和有限体积方法,并通过小鼠磁共振成像 (MRI) 扫描产生的肿瘤进行了验证。结果:本文讨论的方法表明,球体的表面积高估从 50% 降低到 15%,直接从 MRI 扫描生成的肿瘤模型降低了 47% 到 17%。结论:这项工作提供了一种直接的方法,可以从医学成像数据中生成更平滑的域,并减少体素化域中的表面积误差。提出的技术独立于域材料,包括组织类型,并且可以扩展到任何同质或非同质域。通过平滑体素域获得的表面积精度的增加导致在热传递模拟中更准确的温度估计。
更新日期:2020-06-19
down
wechat
bug