当前位置: X-MOL 学术IEEE J. Photovolt. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Prediction of Climate-Specific Degradation Rate for Photovoltaic Encapsulant Discoloration
IEEE Journal of Photovoltaics ( IF 3 ) Pub Date : 2020-07-01 , DOI: 10.1109/jphotov.2020.2989182
Archana Sinha , Hamsini Gopalakrishna , Arun Bala Subramaniyan , Deepak Jain , Jaewon Oh , Dirk Jordan , GovindaSamy TamizhMani

Encapsulant discoloration is a well-known field degradation mode of crystalline-silicon photovoltaic modules, particularly in the hot climate zones. The discoloration rate is influenced by several weathering factors, such as UV light, module temperature, and humidity, as well as the permeability of oxygen into the module. In this article, a rate dependence model employing the modified Arrhenius equations to predict the degradation rate for encapsulant discoloration in different climates is presented. Two modeling approaches are introduced, which utilize the field and accelerated UV testing degradation data in conjunction with the field meteorological data to determine the acceleration factor for encapsulant browning. A novel method of accelerated UV stress testing at three simultaneous module temperatures in a single environmental chamber test run is implemented to estimate the activation energy for browning. The test was performed on three field-retrieved modules to capture the wear-out failure mechanism. The degradation in short-circuit current Isc rather than maximum power is used as a decisive parameter for the discoloration analysis. Furthermore, the developed model has been used to predict the Isc degradation rate for the Arizona field characterized by a hot and dry climate and is validated against the field-measured value. It has also been applied to other climate types, e.g., the cold and dry climate of New York.

中文翻译:

光伏封装材料变色的气候特定降解率预测

密封剂变色是晶体硅光伏组件众所周知的现场退化模式,特别是在炎热气候区。变色率受多种风化因素的影响,例如紫外线、模块温度和湿度,以及氧气进入模块的渗透率。在本文中,提出了一种速率依赖模型,该模型采用修正的 Arrhenius 方程来预测不同气候下密封剂变色的降解速率。介绍了两种建模方法,它们利用现场和加速紫外线测试降解数据结合现场气象数据来确定密封剂褐变的加速因子。实施了一种在单个环境室测试运行中在三个同时模块温度下加速紫外线应力测试的新方法,以估计褐变的活化能。该测试是在三个现场检索模块上进行的,以捕捉磨损失效机制。短路电流 Isc 的退化而不是最大功率被用作变色分析的决定性参数。此外,开发的模型已用于预测以炎热干燥气候为特征的亚利桑那油田的 Isc 降解率,并根据现场测量值进行了验证。它也已应用于其他气候类型,例如纽约寒冷干燥的气候。该测试是在三个现场检索模块上进行的,以捕捉磨损失效机制。短路电流 Isc 的退化而不是最大功率被用作变色分析的决定性参数。此外,开发的模型已用于预测以炎热干燥气候为特征的亚利桑那油田的 Isc 降解率,并根据现场测量值进行了验证。它也已应用于其他气候类型,例如纽约寒冷干燥的气候。该测试是在三个现场检索模块上进行的,以捕捉磨损失效机制。短路电流 Isc 的退化而不是最大功率被用作变色分析的决定性参数。此外,开发的模型已用于预测以炎热干燥气候为特征的亚利桑那油田的 Isc 降解率,并根据现场测量值进行了验证。它也已应用于其他气候类型,例如纽约寒冷干燥的气候。开发的模型已用于预测以炎热干燥气候为特征的亚利桑那油田的 Isc 降解率,并根据现场测量值进行了验证。它也已应用于其他气候类型,例如纽约寒冷干燥的气候。开发的模型已用于预测以炎热干燥气候为特征的亚利桑那油田的 Isc 降解率,并根据现场测量值进行了验证。它也已应用于其他气候类型,例如纽约寒冷干燥的气候。
更新日期:2020-07-01
down
wechat
bug