当前位置: X-MOL 学术Int. J. Non-Linear Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Active control for acoustic wave propagation in nonlinear diatomic acoustic metamaterials
International Journal of Non-Linear Mechanics ( IF 3.2 ) Pub Date : 2020-06-19 , DOI: 10.1016/j.ijnonlinmec.2020.103535
Zhenyu Chen , Weijian Zhou , C.W. Lim

Wave propagation through nonlinear acoustic metamaterials has generated numerous scientific interests for their enormous potential in practical applications these years. This study focuses on the effects of nonlinearity on the band properties of diatomic mass-in-mass chain with active control. By applying the Lindestedt–Poincaré (L–P) perturbation method, analytical dispersion relations of the linear and nonlinear diatomic mass-in-mass system have been established and investigated by numerical simulation. Different from the monatomic mass-in-mass chain, this two mass-in-mass units forming a unit cell of the periodic structure results in four branches of the dispersion relation. The effects of nonlinearity on the band gaps of the system have been exhaustively illustrated. By only tuning the nonlinear constitutive relation parameter of the spring, the fourth branch and the third gap are found to be more sensitive compared to the other branches and gaps. It is concluded that closing and re-opening of the band-folding-induced gap in this nonlinear system is still possible. Here, a piezoelectric spring model is applied to the diatomic mass-in-mass to make the system available for wider applications. With the negative proportional control, a new stop band is generated which can be also captured in the monatomic nonlinear system. The new results here will help better analyze the band gap properties in nonlinear mechanical metamaterials and emphasize the great potentials of the topological analysis of such a nonlinear local resonance system that induces band-folding-induced band gaps.



中文翻译:

非线性双原子声学超材料中声波传播的主动控制

近年来,通过非线性声学超材料的波传播已经引起了广泛的科学兴趣,因为它们在实际应用中具有巨大的潜力。这项研究的重点是在主动控制下非线性对双原子质量链质量能带特性的影响。通过应用Lindestedt-Poincaré(LP)摄动方法,建立了线性和非线性双原子质量块系统的解析色散关系,并通过数值模拟对其进行了研究。与单原子质量链不同,这两个形成周期结构的晶胞的质量单元导致了色散关系的四个分支。已经详尽地说明了非线性对系统带隙的影响。通过仅调整弹簧的非线性本构关系参数,发现第四分支和第三间隙比其他分支和间隙更敏感。结论是,在该非线性系统中,带折叠引起的间隙的闭合和重新打开仍然是可能的。此处,将压电弹簧模型应用于双原子质量块,以使该系统可用于更广泛的应用。通过负比例控制,将生成一个新的阻带,该阻带也可以捕获在单原子非线性系统中。这里的新结果将有助于更好地分析非线性机械超材料中的带隙特性,并强调这种非线性局部共振系统的拓扑分析的巨大潜力,该系统会引起带折叠引起的带隙。结论是,在该非线性系统中,带折叠引起的间隙的闭合和重新打开仍然是可能的。此处,将压电弹簧模型应用于双原子质量块,以使该系统可用于更广泛的应用。通过负比例控制,将生成一个新的阻带,该阻带也可以捕获在单原子非线性系统中。这里的新结果将有助于更好地分析非线性机械超材料中的带隙特性,并强调这种非线性局部共振系统的拓扑分析的巨大潜力,该系统会引起带折叠引起的带隙。结论是,在该非线性系统中,带折叠引起的间隙的闭合和重新打开仍然是可能的。此处,将压电弹簧模型应用于双原子质量块,以使该系统可用于更广泛的应用。通过负比例控制,将生成一个新的阻带,该阻带也可以捕获在单原子非线性系统中。这里的新结果将有助于更好地分析非线性机械超材料中的带隙特性,并强调这种非线性局部共振系统的拓扑分析的巨大潜力,该系统会引起带折叠引起的带隙。将压电弹簧模型应用于双原子质量块,以使该系统可用于更广泛的应用。通过负比例控制,将生成一个新的阻带,该阻带也可以捕获在单原子非线性系统中。这里的新结果将有助于更好地分析非线性机械超材料中的带隙特性,并强调这种非线性局部共振系统的拓扑分析的巨大潜力,该系统会引起带折叠引起的带隙。将压电弹簧模型应用于双原子质量块,以使该系统可用于更广泛的应用。通过负比例控制,将生成一个新的阻带,该阻带也可以捕获在单原子非线性系统中。这里的新结果将有助于更好地分析非线性机械超材料中的带隙特性,并强调这种非线性局部共振系统的拓扑分析的巨大潜力,该系统会引起带折叠引起的带隙。

更新日期:2020-06-19
down
wechat
bug