当前位置: X-MOL 学术Algorithmica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Greed is Good for Deterministic Scale-Free Networks
Algorithmica ( IF 1.1 ) Pub Date : 2020-06-19 , DOI: 10.1007/s00453-020-00729-z
Ankit Chauhan , Tobias Friedrich , Ralf Rothenberger

Large real-world networks typically follow a power-law degree distribution. To study such networks, numerous random graph models have been proposed. However, real-world networks are not drawn at random. Therefore, Brach et al. (27th symposium on discrete algorithms (SODA), pp 1306–1325, 2016) introduced two natural deterministic conditions: (1) a power-law upper bound on the degree distribution (PLB-U) and (2) power-law neighborhoods, that is, the degree distribution of neighbors of each vertex is also upper bounded by a power law (PLB-N). They showed that many real-world networks satisfy both properties and exploit them to design faster algorithms for a number of classical graph problems. We complement their work by showing that some well-studied random graph models exhibit both of the mentioned PLB properties. PLB-U and PLB-N hold with high probability for Chung–Lu Random Graphs and Geometric Inhomogeneous Random Graphs and almost surely for Hyperbolic Random Graphs. As a consequence, all results of Brach et al. also hold with high probability or almost surely for those random graph classes. In the second part we study three classical $$\textsf {NP}$$ NP -hard optimization problems on PLB networks. It is known that on general graphs with maximum degree $$\Delta$$ Δ , a greedy algorithm, which chooses nodes in the order of their degree, only achieves a $$\Omega (\ln \Delta )$$ Ω ( ln Δ ) -approximation for Minimum Vertex Cover and Minimum Dominating Set , and a $$\Omega (\Delta )$$ Ω ( Δ ) -approximation for Maximum Independent Set . We prove that the PLB-U property with $$\beta >2$$ β > 2 suffices for the greedy approach to achieve a constant-factor approximation for all three problems. We also show that these problems are APX -hard even if PLB-U, PLB-N, and an additional power-law lower bound on the degree distribution hold. Hence, a PTAS cannot be expected unless P = NP . Furthermore, we prove that all three problems are in MAX SNP if the PLB-U property holds.

中文翻译:

贪婪有利于确定性无标度网络

大型现实世界网络通常遵循幂律度分布。为了研究这样的网络,已经提出了许多随机图模型。然而,现实世界的网络并不是随机绘制的。因此,布拉赫等人。(第 27 届离散算法研讨会 (SODA),第 1306–1325 页,2016 年)介绍了两个自然确定性条件:(1) 度分布 (PLB-U) 的幂律上限和 (2) 幂律邻域,也就是说,每个顶点的邻居的度分布也有一个幂律(PLB-N)的上限。他们表明,许多现实世界的网络都满足这两个属性,并利用它们为许多经典图问题设计更快的算法。我们通过展示一些经过充分研究的随机图模型展示了提到的 PLB 属性来补充他们的工作。PLB-U 和 PLB-N 对 Chung-Lu 随机图和几何非齐次随机图的概率很高,对于双曲随机图几乎可以肯定。因此,Brach 等人的所有结果。对于那些随机图类,也很有可能或几乎可以肯定地成立。在第二部分中,我们研究了 PLB 网络上的三个经典 $$\textsf {NP}$$ NP -hard 优化问题。已知在最大度数为 $$\Delta$$ Δ 的一般图上,按照度数顺序选择节点的贪心算法只实现了 $$\Omega (\ln \Delta )$$ Ω ( ln Δ ) - 最小顶点覆盖和最小支配集的近似,以及最大独立集的 $$\Omega (\Delta )$$ Ω (Δ) -近似。我们证明了 $$\beta >2$$ β > 2 足以让贪婪方法实现所有三个问题的常数因子近似。我们还表明,即使 PLB-U、PLB-N 和度分布的附加幂律下界成立,这些问题也是 APX 难的。因此,除非 P = NP,否则不能期待 PTAS。此外,如果 PLB-U 属性成立,我们证明所有三个问题都在 MAX SNP 中。
更新日期:2020-06-19
down
wechat
bug