当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Colloidal Quantum Dot Bulk Heterojunction Solids with Near-Unity Charge Extraction Efficiency.
Advanced Science ( IF 15.1 ) Pub Date : 2020-06-17 , DOI: 10.1002/advs.202000894
Min-Jae Choi 1 , Se-Woong Baek 1, 2 , Seungjin Lee 1 , Margherita Biondi 1 , Chao Zheng 1 , Petar Todorovic 1 , Peicheng Li 3 , Sjoerd Hoogland 1 , Zheng-Hong Lu 3 , F Pelayo García de Arquer 1 , Edward H Sargent 1
Affiliation  

Colloidal quantum dots (CQDs) are of interest for optoelectronic applications owing to their tunable properties and ease of processing. Large‐diameter CQDs offer optical response in the infrared (IR), beyond the bandgap of c‐Si and perovskites. The absorption coefficient of IR CQDs (≈104 cm−1) entails the need for micrometer‐thick films to maximize the absorption of IR light. This exceeds the thickness compatible with the efficient extraction of photogenerated carriers, a fact that limits device performance. Here, CQD bulk heterojunction solids are demonstrated that, with extended carrier transport length, enable efficient IR light harvesting. An in‐solution doping strategy for large‐diameter CQDs is devised that addresses the complex interplay between (100) facets and doping agents, enabling to control CQD doping, energetic configuration, and size homogeneity. The hetero‐offset between n‐type CQDs and p‐type CQDs is manipulated to drive the transfer of electrons and holes into distinct carrier extraction pathways. This enables to form active layers exceeding thicknesses of 700 nm without compromising open‐circuit voltage and fill factor. As a result, >90% charge extraction efficiency across the ultraviolet to IR range (350–1400 nm) is documented.

中文翻译:

胶体量子点体异质结固体具有接近一致的电荷提取效率。

胶体量子点(CQD)由于其可调特性和易于加工而在光电应用中受到关注。大直径 CQD 在红外 (IR) 范围内提供光学响应,超出了 c-Si 和钙钛矿的带隙。IR CQD 的吸收系数 (≈10 4 cm -1 ) 需要微米厚的薄膜来最大限度地吸收红外光。这超过了与光生载流子的有效提取相容的厚度,这一事实限制了器件的性能。在这里,CQD 本体异质结固体被证明,通过延长载流子传输长度,可以实现高效的红外光捕获。设计了一种大直径 CQD 的溶液内掺杂策略,解决 (100) 晶面和掺杂剂之间复杂的相互作用,从而能够控制 CQD 掺杂、能量配置和尺寸均匀性。操纵n型CQD和p型CQD之间的异质偏移来驱动电子和空穴转移到不同的载流子提取路径中。这使得能够形成厚度超过 700 nm 的有源层,而不会影响开路电压和填充因子。结果,在紫外到红外范围(350-1400 nm)内电荷提取效率超过 90%。
更新日期:2020-08-05
down
wechat
bug