当前位置: X-MOL 学术Pattern Recogn. Lett. › 论文详情
Uncertainty-aware integration of local and flat classifiers for food recognition
Pattern Recognition Letters ( IF 3.255 ) Pub Date : 2020-06-18 , DOI: 10.1016/j.patrec.2020.06.013
Eduardo Aguilar; Petia Radeva

Food image recognition has recently attracted the attention of many researchers, due to the challenging problem it poses, the ease collection of food images, and its numerous applications to health and leisure. In real applications, it is necessary to analyze and recognize thousands of different foods. For this purpose, we propose a novel prediction scheme based on a class hierarchy that considers local classifiers, in addition to a flat classifier. In order to make a decision about which approach to use, we define different criteria that take into account both the analysis of the Epistemic Uncertainty estimated from the ‘children’ classifiers and the prediction from the ‘parent’ classifier. We evaluate our proposal using three Uncertainty estimation methods, tested on two public food datasets. The results show that the proposed method reduces parent-child error propagation in hierarchical schemes and improves classification results compared to the single flat classifier, meanwhile maintains good performance regardless the Uncertainty estimation method chosen.
更新日期:2020-06-27

 

全部期刊列表>>
胸部和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
鲁照永
华东师范大学
苏州大学
南京工业大学
南开大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
广东实验室
南京大学
王杰
南科大
刘尊峰
湖南大学
清华大学
王小野
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug