当前位置: X-MOL 学术Nucl. Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CFD validation of buoyancy driven jet spreading, mixing and wall interaction
Nuclear Engineering and Design ( IF 1.7 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.nucengdes.2020.110703
Graham Macpherson , Ryan Tunstall

Abstract There are a number of scenarios that can occur in a PWR plant that require the injection of cold fluid into a plenum of warmer fluid. In systems code models of these scenarios, the level of mixing of the falling plume of cold fluid and how it interacts with structures in the plenum must be assumed. Higher fidelity CFD approaches have the potential to resolve the behaviour of the negatively buoyant plume within the plenum and could be used to reduce pessimisms associated with systems code models. This is, however, reliant on having sufficient validation evidence to support the findings of the CFD model. This paper describes validation of the capability of CFD to accurately capture the key phenomena involved, using data from the experiments reported by Kaye and Hunt (2007). Two experiments were modelled with the CFD code ANSYS CFX, using a transient RANS turbulence modelling approach: 1) Overturning of a buoyant plume that encounters a vertical wall; 2) Unconfined buoyant outflow of a plume impinging on a horizontal surface. It is shown that the key aspects of plume mixing and dynamics can be accurately captured by CFD simulations. Buoyant plume theory parameters are presented to enable scaling analysis and comparisons between CFD predictions for reactor cases, where buoyancy forces arise due to temperature differences, and the experiment, where buoyancy forces arise due to differences in salinity. The results are expected to be applicable to a range of practical situations where the interaction of buoyant plumes with solid boundaries occurs.

中文翻译:

浮力驱动射流扩散、混合和壁面相互作用的 CFD 验证

摘要 在 PWR 工厂中可能会发生多种情况,需要将冷流体注入较热的流体集气室。在这些场景的系统代码模型中,必须假设冷流体下落羽流的混合程度以及它如何与压力通风系统中的结构相互作用。更高保真度的 CFD 方法有可能解决压力通风系统内负浮力羽流的行为,并可用于减少与系统代码模型相关的悲观情绪。然而,这依赖于有足够的验证证据来支持 CFD 模型的发现。本文使用 Kaye 和 Hunt(2007 年)报告的实验数据,描述了对 CFD 准确捕获所涉及的关键现象的能力的验证。使用 CFD 代码 ANSYS CFX 对两个实验进行建模,使用瞬态 RANS 湍流建模方法:1) 翻转遇到垂直壁的浮力羽流;2) 冲击水平表面的羽流的无限制浮力流出。结果表明,CFD 模拟可以准确捕获羽流混合和动力学的关键方面。提供了浮力羽流理论参数,以便对反应堆案例的 CFD 预测(由于温度差异而产生浮力)和实验(由于盐度差异而产生浮力)之间进行缩放分析和比较。预计结果将适用于发生浮力羽流与固体边界相互作用的一系列实际情况。2) 冲击水平表面的羽流的无限制浮力流出。结果表明,CFD 模拟可以准确捕获羽流混合和动力学的关键方面。提供了浮力羽流理论参数,以便对反应堆案例的 CFD 预测(由于温度差异而产生浮力)和实验(由于盐度差异而产生浮力)之间进行缩放分析和比较。预计结果将适用于发生浮力羽流与固体边界相互作用的一系列实际情况。2) 冲击水平表面的羽流的无限制浮力流出。结果表明,CFD 模拟可以准确捕获羽流混合和动力学的关键方面。提供了浮力羽流理论参数,以便对反应堆案例的 CFD 预测(由于温度差异而产生浮力)和实验(由于盐度差异而产生浮力)之间进行缩放分析和比较。预计结果将适用于发生浮力羽流与固体边界相互作用的一系列实际情况。提供了浮力羽流理论参数,以便对反应堆案例的 CFD 预测(由于温度差异而产生浮力)和实验(由于盐度差异而产生浮力)之间进行缩放分析和比较。预计结果将适用于发生浮力羽流与固体边界相互作用的一系列实际情况。提供了浮力羽流理论参数,以便对反应堆案例的 CFD 预测(由于温度差异而产生浮力)和实验(由于盐度差异而产生浮力)之间进行缩放分析和比较。预计结果将适用于发生浮力羽流与固体边界相互作用的一系列实际情况。
更新日期:2020-08-01
down
wechat
bug