当前位置: X-MOL 学术Flow Turbulence Combust. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of Concentration on Sedimentation of a Dense Suspension in a Viscous Fluid
Flow, Turbulence and Combustion ( IF 2.4 ) Pub Date : 2020-06-15 , DOI: 10.1007/s10494-020-00172-8
Tariq Shajahan , Wim-Paul Breugem

Macroscopic properties of sedimenting suspensions have been studied extensively and can be characterized using the Galileo number ( Ga ), solid-to-fluid density ratio ( $$\pi _p$$ π p ) and mean solid volume concentration ( $${\bar{\phi }}$$ ϕ ¯ ). However, the particle–particle and particle–fluid interactions that dictate these macroscopic trends have been challenging to study. We examine the effect of concentration on the structure and dynamics of sedimenting suspensions by performing direct numerical simulation based on an Immersed Boundary Method of monodisperse sedimenting suspensions of spherical particles at fixed $$Ga=144$$ G a = 144 , $$\pi _p=1.5$$ π p = 1.5 , and concentrations ranging from $${\bar{\phi }}=0.5$$ ϕ ¯ = 0.5 to $${\bar{\phi }}=30\%$$ ϕ ¯ = 30 % . The corresponding particle terminal Reynolds number for a single settling particle is $$Re_T = 186$$ R e T = 186 . Our simulations reproduce the macroscopic trends observed in experiments and are in good agreement with semi-empirical correlations in literature. From our studies, we observe, first, a change in trend in the mean settling velocities, the dispersive time scales and the structural arrangement of particles in the sedimenting suspension at different concentrations, indicating a gradual transition from a dilute regime ( $${\bar{\phi }} \lesssim 2\%$$ ϕ ¯ ≲ 2 % ) to a dense regime ( $${\bar{\phi }} \gtrsim 10\%$$ ϕ ¯ ≳ 10 % ). Second, we observe the vertical propagation of kinematic waves as fluctuations in the local horizontally-averaged concentration of the sedimenting suspension in the dense regime.

中文翻译:

浓度对粘性流体中稠密悬浮液沉降的影响

沉降悬浮液的宏观特性已被广泛研究,可以使用伽利略数 ( Ga )、固液密度比 ( $$\pi _p$$ π p ) 和平均固体体积浓度 ( $${\bar {\phi }}$$ ϕ ¯ )。然而,决定这些宏观趋势的粒子-粒子和粒子-流体相互作用一直难以研究。我们通过基于固定 $$Ga=144$$G a = 144 , $$\pi 的球形颗粒单分散沉降悬浮液的浸入边界法进行直接数值模拟来检查浓度对沉降悬浮液的结构和动力学的影响_p=1.5$$ π p = 1.5 ,浓度范围从 $${\bar{\phi }}=0.5$$ ϕ ¯ = 0.5 到 $${\bar{\phi }}=30\%$$ ϕ ¯ = 30%。单个沉降粒子的相应粒子终端雷诺数为 $$Re_T = 186$$R e T = 186 。我们的模拟再现了实验中观察到的宏观趋势,并且与文献中的半经验相关性非常吻合。从我们的研究中,我们首先观察到不同浓度下沉降悬浮液中颗粒的平均沉降速度、分散时间尺度和结构排列的趋势变化,表明从稀释状态逐渐过渡($${\ bar{\phi }} \lesssim 2\%$$ ϕ ¯ ≲ 2 % ) 到密集状态 ( $${\bar{\phi }} \gtrsim 10\%$$ ϕ ¯ ≳ 10 % )。其次,我们观察到运动波的垂直传播作为密集区域中沉积悬浮液的局部水平平均浓度的波动。我们的模拟再现了实验中观察到的宏观趋势,并且与文献中的半经验相关性非常吻合。从我们的研究中,我们首先观察到不同浓度下沉降悬浮液中颗粒的平均沉降速度、分散时间尺度和结构排列的趋势变化,表明从稀释状态逐渐过渡($${\ bar{\phi }} \lesssim 2\%$$ ϕ ¯ ≲ 2 % ) 到密集状态 ( $${\bar{\phi }} \gtrsim 10\%$$ ϕ ¯ ≳ 10 % )。其次,我们观察到运动波的垂直传播作为密集区域中沉积悬浮液的局部水平平均浓度的波动。我们的模拟再现了实验中观察到的宏观趋势,并且与文献中的半经验相关性非常吻合。从我们的研究中,我们首先观察到不同浓度下沉降悬浮液中颗粒的平均沉降速度、分散时间尺度和结构排列的趋势变化,表明从稀释状态逐渐过渡($${\ bar{\phi }} \lesssim 2\%$$ ϕ ¯ ≲ 2 % ) 到密集状态 ( $${\bar{\phi }} \gtrsim 10\%$$ ϕ ¯ ≳ 10 % )。其次,我们观察到运动波的垂直传播作为密集区域中沉积悬浮液的局部水平平均浓度的波动。从我们的研究中,我们首先观察到不同浓度下沉降悬浮液中颗粒的平均沉降速度、分散时间尺度和结构排列的趋势变化,表明从稀释状态逐渐过渡($${\ bar{\phi }} \lesssim 2\%$$ ϕ ¯ ≲ 2 % ) 到密集状态 ( $${\bar{\phi }} \gtrsim 10\%$$ ϕ ¯ ≳ 10 % )。其次,我们观察到运动波的垂直传播作为密集区域中沉积悬浮液的局部水平平均浓度的波动。从我们的研究中,我们首先观察到不同浓度下沉降悬浮液中颗粒的平均沉降速度、分散时间尺度和结构排列的趋势变化,表明从稀释状态逐渐过渡($${\ bar{\phi }} \lesssim 2\%$$ ϕ ¯ ≲ 2 % ) 到密集状态 ( $${\bar{\phi }} \gtrsim 10\%$$ ϕ ¯ ≳ 10 % )。其次,我们观察到运动波的垂直传播作为密集区域中沉积悬浮液的局部水平平均浓度的波动。表明从稀释状态( $${\bar{\phi }} \lesssim 2\%$$ ϕ ¯ ≲ 2 % )逐渐过渡到密集状态( $${\bar{\phi }} \gtrsim 10 \%$$ ϕ¯ ≳ 10 % )。其次,我们观察到运动波的垂直传播作为密集区域中沉积悬浮液的局部水平平均浓度的波动。表明从稀释状态( $${\bar{\phi }} \lesssim 2\%$$ ϕ ¯ ≲ 2 % )逐渐过渡到密集状态( $${\bar{\phi }} \gtrsim 10 \%$$ ϕ¯ ≳ 10 % )。其次,我们观察到运动波的垂直传播作为密集区域中沉积悬浮液的局部水平平均浓度的波动。
更新日期:2020-06-15
down
wechat
bug