当前位置: X-MOL 学术Chem. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronegativity and location of anionic ligands drive yttrium NMR for molecular, surface and solid-state structures
Chemical Science ( IF 8.4 ) Pub Date : 2020-06-17 , DOI: 10.1039/d0sc02321c
Lukas Lätsch 1, 2, 3, 4 , Erwin Lam 1, 2, 3, 4 , Christophe Copéret 1, 2, 3, 4
Affiliation  

Yttrium is present in various forms in molecular compounds and solid-state structures; it typically provides specific mechanical and optical properties. Hence, yttrium containing compounds are used in a broad range of applications such as catalysis, lasers and optical devices. Obtaining descriptors that can provide access to a detailed structure–property relationship would therefore be a strong base for the rational design of such applications. Towards this goal, 89Y (100% abundant spin ½ nucleus), is associated with a broad range of NMR chemical shifts that greatly depend on the coordination environment of Y, rendering 89Y NMR an attractive method for the characterization of yttrium containing compounds. However, to date, it has been difficult to obtain a direct relationship between 89Y chemical shifts and its coordination environment. Here, we use computational chemistry to model the chemical shift of a broad range of Y(III) molecular compounds with the goal to reveal the underlying factors that determine the 89Y chemical shift. We show through natural chemical shift (NCS)-analysis that isotropic chemical shifts can easily help to distinguish between different types of ligands solely based on the electronegativity of the central atom of the anionic ligands directly bound to Y(III). NCS-analysis further demonstrates that the second most important parameter is the degree of pyramidalization of the three anionic ligands imposed by additional neutral ligands. While isotropic chemical shifts can be similar due to compensating effects, investigation of the chemical shift anisotropy (CSA) enables discriminating between the coordination environment of Y.

中文翻译:

阴离子配体的电负性和位置驱动钇NMR用于分子,表面和固态结构

钇以各种形式存在于分子化合物和固态结构中。它通常提供特定的机械和光学特性。因此,含钇的化合物被广泛用于催化,激光和光学装置等领域。因此,获得可以访问详细的结构-属性关系的描述符将为合理设计此类应用程序奠定坚实的基础。朝着这个目标迈进,89 Y(100%丰富的自旋½原子核)与范围广泛的NMR化学位移相关,而这些化学位移很大程度上取决于Y的配位环境,使89 Y NMR成为表征含钇化合物的有吸引力的方法。但是,迄今为止,很难获得两者之间的直接关系。89 Y化学位移及其协调环境。在这里,我们使用计算化学方法对各种Y( III)分子化合物的化学位移进行建模,以揭示决定89 Y化学位移的潜在因素。我们通过自然化学位移(NCS)分析表明,仅基于直接与Y( III)结合的阴离子配体中心原子的电负性,各向同性化学位移可以轻松地帮助区分不同类型的配体)。NCS分析进一步证明,第二个最重要的参数是由其他中性配体施加的三个阴离子配体的锥体化程度。虽然各向同性的化学位移由于补偿效应而可能相似,但是研究化学位移各向异性(CSA)可以区分Y的配位环境。
更新日期:2020-07-08
down
wechat
bug