当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chemically Controllable Porous Polymer–Nanocrystal Composites with Hierarchical Arrangement Show Substrate Transport Selectivity
Chemistry of Materials ( IF 8.6 ) Pub Date : 2020-06-17 , DOI: 10.1021/acs.chemmater.0c02233
Andrew R. Riscoe 1 , Cody J. Wrasman 1 , Aditya Menon 1 , Bhavish Dinakar 1 , Emmett D. Goodman 1 , Larissa Y. Kunz 1 , Sara Yacob 2 , Matteo Cargnello 1
Affiliation  

Functional organic–inorganic hybrid materials with tunable properties are useful across many application areas, ranging from gas storage to electronics, flame retardants, separations, and catalysis. Combining polymers, with a suite of functional groups and conformational flexibility, and inorganic nanoparticles, with tunable surface chemistry and composition, yields hybrids with novel functional properties. Specifically, in catalysis, control of the electronic environment at a metal interface is paramount in determining the catalytic properties. In this contribution, we describe a modular process to prepare porous polymer–nanocrystal (NC) composites in a hierarchical, multilayered synthesis, in which multiple parameters can be accurately tuned: polymer functional groups and the corresponding pore structure, the polymer layer thickness, and the NC size, shape, and composition. This process provides for a variety of controlled materials with high surface area, tunable chemistry, and thermal and chemical stabilities. Furthermore, we demonstrate their utility for shape- and size-selective catalytic conversions both in oxidation and hydrogenation reactions, where they show increased selectivity by orders of magnitude compared to conventional polymer-supported metal catalysts. In light of the high degree of control in the composite structure, this method allows for the design and realization of catalysts for several reactions and reaction environments and for nanomaterials with other applications.

中文翻译:

具有分层排列的化学可控多孔聚合物-纳米晶体复合材料显示底物迁移选择性

具有可调性的功能性有机-无机杂化材料可用于许多应用领域,从气体存储到电子产品,阻燃剂,分离和催化。将具有一组官能团和构象柔韧性的聚合物与具有可调表面化学性质和组成的无机纳米粒子结合在一起,可得到具有新型功能特性的杂化体。具体地,在催化中,控制金属界面处的电子环境对于确定催化性质至关重要。在这项贡献中,我们描述了一种模块化的过程,该过程以分层的多层合成方式制备多孔聚合物-纳米晶体(NC)复合材料,其中可以精确调整多个参数:聚合物官能团和相应的孔结构,聚合物层厚度,以及NC的大小,形状和组成。该过程提供了具有高表面积,可调谐化学以及热和化学稳定性的各种受控材料。此外,我们证明了它们在氧化和氢化反应中可用于形状和尺寸选择性催化转化,与常规的聚合物负载金属催化剂相比,它们的选择性提高了几个数量级。鉴于复合结构的高度控制,该方法允许设计和实现用于几种反应和反应环境以及具有其他应用的纳米材料的催化剂。我们证明了它们在氧化和氢化反应中可用于形状和尺寸选择催化转化的效用,与常规的聚合物负载金属催化剂相比,它们的选择性提高了几个数量级。鉴于复合结构的高度控制,该方法允许设计和实现用于几种反应和反应环境以及具有其他应用的纳米材料的催化剂。我们证明了它们在氧化和氢化反应中可用于形状和尺寸选择催化转化的效用,与常规的聚合物负载金属催化剂相比,它们的选择性提高了几个数量级。鉴于复合结构的高度控制,该方法允许设计和实现用于几种反应和反应环境以及具有其他应用的纳米材料的催化剂。
更新日期:2020-07-14
down
wechat
bug