当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Number of Surface-Attached Acceptors on a Quantum Dot Impacts Energy Transfer and Photon Upconversion Efficiencies
ACS Photonics ( IF 7 ) Pub Date : 2020-06-16 , DOI: 10.1021/acsphotonics.0c00771
Jie Zhang 1 , Hironori Kouno 2 , Nobuhiro Yanai 2, 3 , Daichi Eguchi 4 , Tatsuo Nakagawa 5 , Nobuo Kimizuka 2 , Toshiharu Teranishi 4 , Masanori Sakamoto 4
Affiliation  

Composites of organic molecules and inorganic quantum dots (QDs) have emerged as attractive photon upconversion systems that use triplet–triplet annihilation upconversion (TTA-UC). However, the upconversion efficiency of such systems is still far from reaching their theoretical potential. The number of acceptor molecules directly coordinated on a QD (n) should determine triplet–triplet energy transfer (TTET) efficiency (ΦTTET), which consequently affects the efficiency of TTA-UC, but the research focusing on the n value has been limited. In the present report, the effect of n on TTET from CdSe or CdTe QDs to perylene-3-carboxylic acid (Pe; i.e., acceptor) were systematically investigated. The TTET and TTA-UC efficiencies increase with increasing n. The regulation of n on a QD could provide a straightforward means to realize high-performance TTA-UC. For the molecule/QDs systems, small QDs with a wide band gap are favorable for intrinsic TTET (i.e., TTET in a one-to-one QD-Pe composite system), because intrinsic TTET efficiency is detemined by the triplet energy of QDs. On the other hand, the small QDs limit the n due to the small surface area. Therefore, the proper choices of QDs and acceptors providing both sufficient free energy change for TTET and large n are important to achieve efficient TTA-UC.

中文翻译:

量子点上表面附着受体的数量影响能量转移和光子上转换效率

有机分子和无机量子点(QD)的复合材料已经成为使用三重态-三重态an灭上转换(TTA-UC)的有吸引力的光子上转换系统。但是,这种系统的上转换效率仍远未达到其理论潜力。直接与QD(n)配位的受体分子的数量应决定三重态-三重态能量传递(TTET)的效率(ΦTTET),从而影响TTA-UC的效率,但是集中于n值的研究受到限制。在本报告中,n的影响从CdSe或CdTe QDs到per 3-羧酸(Pe;即受体)的TTET上的体系研究。TTET和TTA-UC效率随n的增加而增加。在QD上对n的调节可以提供一种实现高性能TTA-UC的直接方法。对于分子/量子点系统,具有宽带隙的小量子点对于本征TTET(即一对一QD-Pe复合系统中的TTET)有利,因为固有TTET效率由量子点的三重态能量决定。另一方面,小的QD由于表面积小而限制了n。因此,为TTET提供足够的自由能变化和提供较大的n的QD和受体的正确选择对于实现有效的TTA-UC很重要。
更新日期:2020-07-15
down
wechat
bug