Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A new method to production prediction for the shale gas reservoir
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects ( IF 2.9 ) Pub Date : 2020-06-17
Ting Li, Yongsheng Tan, Faraj A. Ahmad, Haiyan Liu

It is a common phenomenon that shale gas production differs significantly among wells, and it is difficult to find a relationship between engineering variables and gas rate by utilizing a simple plotting of production data against well and treatment variables. Data such as completion method, flow back, and gas production have been collected for 180 shale gas wells. Firstly, the collected data were standardized, and then related or dependent variables were removed by gray correlation analysis. Finally, principal component analysis and BP Neural-network methods are applied separately to analyze the collected data. It is the first-of-its-kind study that was conducted to define the relationship between gas production and engineering parameters for Fuling shale gas reservoir in China. By use of principal component analysis, it is concluded that the number of stages, the lateral length, the distance between clusters, and the average volume of slick-water are the main factors that impact shale gas production. The results showed that stage numbers account for 42.9% of the total variance, while the horizontal length accounts for about 21.4%; therefore, these two factors account for 64.3% among all of the factors. However, the next important factors are the average distance between clusters and the average volume of slick-water, both account for 24.1% of the total variance. The importance of each variable was also defined by the BP Neural-network method. The number of stages and the horizontal length are still the two major factors, and both account for 52%. The volume of slick-water and the proppant size of 40/70 mesh for both ceramic and sand are considered the second important factor and both account for 37%. This implies that shale gas well configuration and treatment parameters are the dominant factors for gas production in shale reservoirs. Therefore, in order to enhance gas production, it is crucial to increase the number of stages and horizontal length firstly and to raise the volume of slick-water by using 40/70 mesh for both ceramic and sand. However, another driver to accelerate production is to decrease the distance of clusters. These measures will be helpful to improve production in the future shale gas development of Fuling reservoir. This study is believed to be the first-of-its-kind to define the relationship between gas production and engineering parameters for Fuling shale gas reservoir in China.

更新日期:2020-06-17
down
wechat
bug