当前位置: X-MOL 学术Adv. Mater. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microtrench‐Patterned Elastomeric Substrate for Stretchable Electronics with Minimal Interference by Bodily Motion
Advanced Materials Technologies ( IF 6.8 ) Pub Date : 2020-06-17 , DOI: 10.1002/admt.202000432
Jaedeuk Lee 1, 2 , Eun Roh 3 , Nae‐Eung Lee 1, 2, 3, 4
Affiliation  

Challenges associated with local stress concentration on layers in stretchable devices under mechanical deformation by bodily motions, which causes strain‐induced signal interference and generates cracks, constitute one of the remaining issues for realization of skin‐attachable stretchable electronics. Herein, a new structural engineering approach is introduced for an elastomeric substrate, a microtrench‐patterned stretchable substrate, in which microtrenches are formed on the substrate backside, effectively mitigating local stress on the surface layers under stretching. Combining the microtrench pattern on the backside and 3D stress‐absorbing microstructured surface on the frontside of the elastomeric substrate for stress engineering results in effective suppression of stress concentration on the crack‐prone carbon paste electrode and piezoresistive pressure sensing layer on the frontside surface due to stress‐concentration on microtrench pattern and, in turn, minimal change in their resistance with deformation. This approach using a simple and facile method to minimize stress in device layers under motion‐induced deformation has great potential for applications of diverse materials for body‐attachable stretchable electronics with minimal strain‐responsiveness.

中文翻译:

可伸缩电子的微沟槽图案化弹性体基底,身体运动的干扰最小

在人体运动引起机械变形的情况下,与局部应力集中在可拉伸设备的各层相关的挑战会导致应变引起的信号干扰并产生裂纹,这是实现可贴在皮肤上的可拉伸电子器件的剩余问题之一。在本文中,针对弹性体基材(一种具有微沟槽图案的可拉伸基材)引入了一种新的结构工程方法,其中在基材背面形成了微沟槽,可有效缓解拉伸条件下表面层上的局部应力。将背面的微沟槽图案和弹性体基材的正面的3D应力吸收微结构化表面相结合以进行应力工程,可有效抑制易裂纹的碳糊电极上的应力集中以及前表面上的压阻压力感应层,这是由于应力集中在微沟槽图案上,从而使它们的阻力随变形的变化最小。这种使用简单而简便的方法来最小化运动引起的变形下器件层中应力的方法,对于将各种材料用于可穿戴式可伸缩电子设备,具有最小的应变响应,具有巨大的潜力。阻力随变形的变化最小。这种使用简单而简便的方法来最小化运动引起的变形下器件层中应力的方法,对于将各种材料用于可穿戴式可伸缩电子设备,具有最小的应变响应性,具有巨大的潜力。阻力随变形的变化最小。这种使用简单而简便的方法来最小化运动引起的变形下器件层中应力的方法,对于将各种材料用于可穿戴式可伸缩电子设备,具有最小的应变响应性,具有巨大的潜力。
更新日期:2020-08-10
down
wechat
bug