当前位置: X-MOL 学术Int. J. Press. Vessel. Pip. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A universal approach to ratcheting problems of bree type incorporating arbitrary loading and material nonlinearity conditions
International Journal of Pressure Vessels and Piping ( IF 3 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.ijpvp.2020.104137
Xianjun Pei , Pingsha Dong

Abstract A universal solution procedure has been developed for solving a wide range of thermal ratcheting problems beyond those covered by Bree Diagram or modified Bree Diagrams. Both thermal and pressure cyclic loading histories considered can be in-phase or out-of-phase with a prescribed phase shift. Material strain hardening behavior is modeled through a modified Ramberg-Osgood stress-strain relationship which can recover the elastic-perfect-plastic material response as an idealized case considered originally by Bree. The universal procedure is made possible through a unified analytical treatment of the associated thermoplasticity phenomena in an incremental form. In addition to elucidating some specific mechanics aspects of ratcheting phenomena under realistic loading and material hardening conditions of interest, the procedure can be used to automate the Bree Diagram generation process under conditions beyond those available to design engineers today. Validations are performed by comparing with brute force finite element solutions for selected thermal ratcheting problems and recovering the original and modified Bree Diagrams used by Codes and Standards currently used by the pressure equipment industry. One key finding is that by considering strain hardening effects, Bree diagram actually “evolves”, primarily in the form of an expanded “shakedown” region, as cyclic thermal and pressure loading continues until a limiting condition is reached. This suggests that existing ratcheting design criteria can be overly conservative.

中文翻译:

一种结合任意载荷和材料非线性条件的布里类棘轮问题的通用方法

摘要 已开发出一种通用求解程序,用于解决布理图或修改布理图所涵盖的范围之外的各种热棘轮问题。考虑的热和压力循环加载历史可以是同相或异相的,具有指定的相移。材料应变硬化行为通过修改后的 Ramberg-Osgood 应力-应变关系进行建模,该关系可以将弹性-完美-塑性材料响应恢复为 Bree 最初考虑的理想化情况。通过以增量形式对相关热塑性现象进行统一分析处理,使通用程序成为可能。除了阐明在实际载荷和感兴趣的材料硬化条件下棘轮现象的一些特定力学方面,该程序可用于在超出当今设计工程师可用条件的条件下自动生成 Bree 图。通过与选定的热棘轮问题的蛮力有限元解决方案进行比较,并恢复压力设备行业当前使用的规范和标准所使用的原始和修改后的 Bree 图,来执行验证。一个关键发现是,通过考虑应变硬化效应,Bree 图实际上“演变”,主要以扩大的“调整”区域的形式,因为循环热负荷和压力负荷一直持续到达到限制条件。这表明现有的棘轮设计标准可能过于保守。通过与选定的热棘轮问题的蛮力有限元解决方案进行比较,并恢复压力设备行业当前使用的规范和标准所使用的原始和修改后的 Bree 图,来执行验证。一个关键发现是,通过考虑应变硬化效应,Bree 图实际上“演变”,主要以扩大的“调整”区域的形式,因为循环热负荷和压力负荷一直持续到达到限制条件。这表明现有的棘轮设计标准可能过于保守。通过与选定的热棘轮问题的蛮力有限元解决方案进行比较,并恢复压力设备行业当前使用的规范和标准所使用的原始和修改后的 Bree 图,来执行验证。一个关键发现是,通过考虑应变硬化效应,Bree 图实际上“演变”,主要以扩大的“调整”区域的形式,因为循环热负荷和压力负荷一直持续到达到限制条件。这表明现有的棘轮设计标准可能过于保守。一个关键发现是,通过考虑应变硬化效应,Bree 图实际上“演变”,主要以扩大的“调整”区域的形式,因为循环热负荷和压力负荷一直持续到达到限制条件。这表明现有的棘轮设计标准可能过于保守。一个关键发现是,通过考虑应变硬化效应,Bree 图实际上“演变”,主要以扩大的“调整”区域的形式,因为循环热负荷和压力负荷一直持续到达到限制条件。这表明现有的棘轮设计标准可能过于保守。
更新日期:2020-08-01
down
wechat
bug