当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adhesion force spectroscopy with nanostructured colloidal probes reveals nanotopography-dependent early mechanotransductive interactions at the cell membrane level.
Nanoscale ( IF 6.7 ) Pub Date : 2020-06-16 , DOI: 10.1039/d0nr01991g
M Chighizola 1 , A Previdi , T Dini , C Piazzoni , C Lenardi , P Milani , C Schulte , A Podestà
Affiliation  

Mechanosensing, the ability of cells to perceive and interpret the microenvironmental biophysical cues (such as the nanotopography), impacts strongly cellular behaviour through mechanotransductive processes and signalling. These events are predominantly mediated by integrins, the principal cellular adhesion receptors located at the cell/extracellular matrix (ECM) interface. Because of the typical piconewton force range and nanometre length scale of mechanotransductive interactions, achieving a detailed understanding of the spatiotemporal dynamics occurring at the cell/microenvironment interface is challenging; sophisticated interdisciplinary methodologies are required. Moreover, an accurate control over the nanotopographical features of the microenvironment is essential, in order to systematically investigate and precisely assess the influence of the different nanotopographical motifs on the mechanotransductive process. In this framework, we were able to study and quantify the impact of microenvironmental nanotopography on early cellular adhesion events by means of adhesion force spectroscopy based on innovative colloidal probes mimicking the nanotopography of natural ECMs. These probes provided the opportunity to detect nanotopography-specific modulations of the molecular clutch force loading dynamics and integrin clustering at the level of single binding events, in the critical time window of nascent adhesion formation. Following this approach, we found that the nanotopographical features are responsible for an excessive force loading in single adhesion sites after 20–60 s of interaction, causing a drop in the number of adhesion sites. However, by manganese treatment we demonstrated that the availability of activated integrins is a critical regulatory factor for these nanotopography-dependent dynamics.

中文翻译:

具有纳米结构的胶体探针的粘附力光谱学揭示了在细胞膜水平上依赖纳米形貌的早期机械转导相互作用。

机械感知,即细胞感知和解释微环境生物物理线索(例如纳米形貌)的能力,通过机械转导过程和信号传递强烈影响细胞行为。这些事件主要由整联蛋白介导,整联蛋白是位于细胞/细胞外基质(ECM)界面的主要细胞粘附受体。由于典型的微微力作用力范围和机械转导相互作用的纳米长度尺度,对细胞/微环境界面处发生的时空动力学的详细了解是一项挑战。需要复杂的跨学科方法。此外,精确控制微环境的纳米形貌特征至关重要,为了系统地研究和精确评估不同的纳米形图案对机械转导过程的影响。在此框架中,我们能够通过基于模拟天然ECM纳米形貌的创新胶体探针的附着力光谱法研究和量化微环境纳米形貌对早期细胞黏附事件的影响。这些探针提供了机会,可以在新生黏附形成的关键时间窗口内,检测单个结合事件水平上分子离合器力加载动力学和整联蛋白簇簇的纳米形貌特定调节。按照这种方法,我们发现在20至60 s的相互作用后,纳米形貌特征导致单个粘附位点的力过大,导致粘附部位数量减少。但是,通过锰处理,我们证明了活化整联蛋白的可用性是这些纳米形貌依赖动力学的关键调节因素。
更新日期:2020-07-16
down
wechat
bug