当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental Visualization of Commercial Lithium Ion Battery Cathodes: Distinguishing Between the Microstructure Components Using Atomic Force Microscopy
The Journal of Physical Chemistry C ( IF 3.7 ) Pub Date : 2020-06-16 , DOI: 10.1021/acs.jpcc.0c02713
J.S. Terreblanche 1 , D.L. Thompson 1 , I.M. Aldous 2 , J. Hartley 1 , A.P. Abbott 1 , K.S. Ryder 1
Affiliation  

The integration of lithium-ion batteries (LIB) into transportation through the implementation of hybrid and electric vehicles is driving fundamental research into improving their performance and lifetime. The rapid production of new electric vehicles by several popular brands also raises the question of how much material will eventually need to be reused or recycled. With a combination of an enhanced fundamental analysis of commercially utilized electrodes with fundamental chemical knowledge, answers to the scientific material challenges of lithium ion batteries will aid in not only the implementation of battery powered electrical transport but also the development of end of life recycling processes. Here, using quantitative nanomechanical and conductive atomic force microscopy, which are nondestructive and rapid techniques, the different components of the composite electrode are unveiled at the nanoscale, identifying the mechanism by which the active material binds together and how the conductive network is formed. Changes in the polymer binder network are observed in an aged cell and are shown to affect the mechanical integrity of the electrode structure, which can lead to the failure of the electrode. The links between nanomechanical and macro-mechanical properties were evaluated using a scratch test and optical microscopy to show that the mechanical integrity of the aged cell was weaker than that of the untouched cell.

中文翻译:

商业化锂离子电池阴极的实验可视化:使用原子力显微镜区分微观结构组件之间

通过实施混合动力和电动汽车将锂离子电池(LIB)集成到运输中,正在推动基础研究来改善其性能和使用寿命。几个受欢迎的品牌迅速生产出新的电动汽车,这也引发了一个问题,即最终将需要再利用或回收多少材料。结合对商业用途电极的增强的基本分析和基本的化学知识的结合,对锂离子电池的科学材料挑战的答案不仅将有助于实施电池供电的电传输,而且还将有助于回收寿命终止过程。在这里,使用定量的纳米机械和导电原子力显微镜,它们是非破坏性的快速技术,复合电极的不同组成部分在纳米尺度上揭开面纱,确定了活性材料结合在一起的机理以及如何形成导电网络。在老化的电池中观察到聚合物粘合剂网络的变化,并显示出它们会影响电极结构的机械完整性,这可能导致电极失效。纳米机械性能和宏观机械性能之间的联系使用划痕测试和光学显微镜进行了评估,结果表明老化电池的机械完整性比未接触电池的机械完整性要弱。在老化的电池中观察到聚合物粘合剂网络的变化,并显示出它们会影响电极结构的机械完整性,这可能导致电极失效。纳米机械性能和宏观机械性能之间的联系使用划痕测试和光学显微镜进行了评估,结果表明,老化电池的机械完整性比未接触电池的机械完整性要弱。在老化的电池中观察到聚合物粘合剂网络的变化,并显示出它们会影响电极结构的机械完整性,这可能导致电极失效。纳米机械性能和宏观机械性能之间的联系使用划痕测试和光学显微镜进行了评估,结果表明老化电池的机械完整性比未接触电池的机械完整性要弱。
更新日期:2020-07-09
down
wechat
bug