当前位置: X-MOL 学术Adv. Opt. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Optical Emission from 2D InSe Bent onto Si‐Pillars
Advanced Optical Materials ( IF 9 ) Pub Date : 2020-06-15 , DOI: 10.1002/adom.202000828
Debarati Mazumder 1 , Jiahao Xie 2 , Zakhar R. Kudrynskyi 1 , Xinjiang Wang 2 , Oleg Makarovsky 1 , Mahabub A. Bhuiyan 1 , Hyunseok Kim 3 , Ting‐Yuan Chang 3 , Diana L. Huffaker 3, 4 , Zakhar D. Kovalyuk 5 , Lijun Zhang 2 , Amalia Patanè 1
Affiliation  

Controlling the propagation and intensity of an optical signal is central to several technologies ranging from quantum communication to signal processing. These require a versatile class of functional materials with tailored electronic and optical properties, and compatibility with different platforms for electronics and optoelectronics. Here, the inherent optical anisotropy and mechanical flexibility of atomically thin semiconducting layers are investigated and exploited to induce a controlled enhancement of optical signals. This enhancement is achieved by straining and bending layers of the van der Waals crystal indium selenide (InSe) onto a periodic array of Si‐pillars. This enhancement has strong dependence on the layer thickness and is modelled by first‐principles electronic band structure theory, revealing the role of the symmetry of the atomic orbitals and light polarization dipole selection rules on the optical properties of the bent layers. The effects described in this paper are qualitatively different from those reported in other materials, such as transition metal dichalcogenides, and do not arise from a photonic cavity effect, as demonstrated before for other semiconductors. The findings on InSe offer a route to flexible nano‐photonics compatible with silicon electronics by exploiting the flexibility and anisotropic and wide spectral optical response of a 2D layered material.

中文翻译:

从2D InSe弯曲到硅柱的增强的光发射

控制光信号的传播和强度对于从量子通信到信号处理的多种技术至关重要。这些需要具有定制电子和光学特性的通用功能类材料,并与电子和光电子的不同平台兼容。在这里,原子薄半导体层的固有光学各向异性和机械柔韧性被研究和利用来引起光信号的受控增强。通过将范德华晶体硒化铟(InSe)的层拉伸和弯曲到周期性的Si柱阵列上,可以实现这种增强。这种增强强烈依赖于层的厚度,并以第一性原理电子能带结构理论为模型,揭示了原子轨道的对称性和光偏振偶极子选择规则对弯曲层光学特性的作用。本文中描述的效应在质量上与其他材料(例如过渡金属二卤化钨)中报道的效应不同,并且并非如先前针对其他半导体所证明的那样,是由光子腔效应引起的。InSe的发现通过利用2D层状材料的柔性,各向异性和宽光谱光学响应,为与硅电子产品兼容的柔性纳米光子学提供了一条途径。不会像其他半导体所证明的那样,是由光子腔效应引起的。InSe的发现通过利用2D层状材料的柔性,各向异性和宽光谱光学响应,为与硅电子产品兼容的柔性纳米光子学提供了一条途径。不会像其他半导体所证明的那样,是由光子腔效应引起的。InSe的发现通过利用2D层状材料的柔性,各向异性和宽光谱光学响应,为与硅电子产品兼容的柔性纳米光子学提供了一条途径。
更新日期:2020-06-15
down
wechat
bug