当前位置: X-MOL 学术J. Quant. Spectrosc. Radiat. Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ample textures for electromagnetic scattering in radiative transfer
Journal of Quantitative Spectroscopy and Radiative Transfer ( IF 2.3 ) Pub Date : 2020-06-16 , DOI: 10.1016/j.jqsrt.2020.107113
T. Mathew , B. Rousseau , A. Litman , Y. Favennec

The numerical resolution of wave-matter interaction on complex micro heterogeneities constituting modern industrial materials poses significant computational hurdles. These computations hold a crucial role in the design cycle meant to optimize their participating behavior at high temperatures. To arrive at a reasonable conclusion at the expense of optimal resources, some textural details inherent to these materials are often truncated. For the accurate resolution of multi-scale thermal radiative transport, very little is known today about the role of these truncated textural information to the overall effective radiative properties. With the ultimate prospect of large scale finite element modeling of electromagnetic scattering for participating media, this initial attempt in 2D explores this aspect, learning from the ability of fractals to quantify textural details or roughness of complex objects. Based on a desirable error tolerance, critical quantitative limits were drawn, with which future large scale electromagnetic scattering computations can be performed confidently with optimum resources, without compromising the accuracy. From intensive numerical experiments, ample textural details relevant for a desired accuracy (1% error) of the extinction efficiency, scattering efficiency, and asymmetry parameter are quantified, and limits established. Error estimates for the aforementioned radiative properties at the limiting resolution (1 µm) of the economical imaging techniques today, are also drawn for better insights.



中文翻译:

足够的纹理用于辐射传递中的电磁散射

在构成现代工业材料的复杂微观异质性上波物质相互作用的数值分辨率带来了很大的计算障碍。这些计算在设计周期中起着至关重要的作用,旨在优化它们在高温下的参与行为。为了以最佳资源为代价得出合理的结论,通常会删去这些材料固有的一些纹理细节。为了精确解析多尺度热辐射传输,目前对于这些截短的纹理信息对整体有效辐射特性的作用知之甚少。借助对参与介质进行电磁散射的大规模有限元建模的最终前景,这项2D的初步尝试探索了这一方面,从分形量化复杂物体的纹理细节或粗糙度的能力中学习。基于理想的容错能力,确定了关键的定量极限,利用这些极限,可以在不影响精度的前提下,利用最佳资源来可靠地执行未来的大规模电磁散射计算。从大量的数值实验中,可以量化出与消光效率,散射效率和不对称参数的所需精度(误差为1%)相关的大量纹理细节,并确定了极限。为了更好地了解,还绘制了当今经济成像技术在极限分辨率(1 µm)时上述辐射特性的误差估计。绘制了关键的定量极限,利用这些极限可以在不影响准确性的前提下,利用最佳资源可靠地进行大规模电磁散射计算。从大量的数值实验中,可以量化出与消光效率,散射效率和不对称参数的所需精度(误差为1%)相关的大量纹理细节,并确定了极限。为了更好地了解,还绘制了当今经济成像技术在极限分辨率(1 µm)时上述辐射特性的误差估计。绘制了关键的定量极限,利用这些极限可以在不影响准确性的前提下,利用最佳资源可靠地进行大规模电磁散射计算。从大量的数值实验中,可以量化出与消光效率,散射效率和不对称参数的所需精度(误差为1%)相关的大量纹理细节,并确定了极限。为了更好地了解,还绘制了当今经济成像技术在极限分辨率(1 µm)时上述辐射特性的误差估计。量化与消光效率,散射效率和不对称参数的所需精度(误差为1%)相关的大量纹理细节,并建立限制。为了更好地了解,还绘制了当今经济成像技术在极限分辨率(1 µm)时上述辐射特性的误差估计。量化与消光效率,散射效率和不对称参数的所需精度(误差为1%)相关的大量纹理细节,并建立限制。为了更好地了解,还绘制了当今经济成像技术在极限分辨率(1 µm)时上述辐射特性的误差估计。

更新日期:2020-06-16
down
wechat
bug