当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Augmentation of conductive pathways in carbon black/PLA 3D-printed electrodes achieved through varying printing parameters
Electrochimica Acta ( IF 6.6 ) Pub Date : 2020-06-16 , DOI: 10.1016/j.electacta.2020.136618
A. Abdalla , H.H. Hamzah , O. Keattch , D. Covill , B.A. Patel

3D-printing of conductive carbon materials in sensing applications and energy storage devices has significant potential, however high resistivity of 3D-printed filaments poses a challenge. Strategies to enhance sensors post printing are time consuming and can reduce structural integrity. In this work, we investigated the effects different printing layer thickness and orientation can have on the electron transfer kinetics and resistivity of conductive materials. The response of these electrodes was investigated by cyclic voltammetry, electrochemical impedance spectroscopy and imaging. Electrodes printed with the lowest layer thickness of 0.1 mm in a vertical orientation had the greatest conductivity. With increasing print layer thickness and printing in a horizontal orientation, the electrode was more resistive. This work is the first to demonstrate the significant impact 3D-printing parameters can have on the electron transfer kinetics of carbon conductive electrodes. The implications of this study are important in defining the manufacturing process of electrodes for all applications.



中文翻译:

炭黑/ PLA 3D打印电极中导电路径的增强,可通过改变打印参数来实现

在传感应用和能量存储设备中对导电碳材料进行3D打印具有巨大的潜力,但是3D打印细丝的高电阻率带来了挑战。增强传感器在印后的策略非常耗时,并且会降低结构完整性。在这项工作中,我们研究了不同印刷层厚度和取向对导电材料的电子转移动力学和电阻率的影响。通过循环伏安法,电化学阻抗谱和成像研究了这些电极的响应。在垂直方向上印刷的最小层厚度为0.1 mm的电极具有最大的导电性。随着印刷层厚度的增加和水平方向的印刷,电极的电阻更大。这项工作是首次证明3D打印参数可能对碳导电电极的电子转移动力学产生重大影响。这项研究的意义对于定义适用于所有应用的电极的制造工艺至关重要。

更新日期:2020-07-05
down
wechat
bug