当前位置: X-MOL 学术Catal. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced reduction and oxidation capability over the CeO2/g-C3N4 hybrid through surface carboxylation: performance and mechanism
Catalysis Science & Technology ( IF 5 ) Pub Date : 2020-06-15 , DOI: 10.1039/d0cy00395f
Haiping Hu 1, 2, 3, 4, 5 , Jisong Hu 2, 3, 4, 6 , Xiuyuan Wang 3, 4, 7, 8 , Jianchang Gan 1, 2, 3, 4, 5 , Ming Su 1, 2, 3, 4, 5 , Wenhua Ye 1, 2, 3, 4, 5 , Wenhua Zhang 1, 2, 3, 4, 5 , Xinguo Ma 2, 3, 4, 6 , Huihu Wang 1, 2, 3, 4, 5
Affiliation  

The CeO2/g-C3N4 hybrid is a kind of efficient photocatalyst with both photoinduced oxidation and reduction capability, which is of great concern in solar energy application. Herein, we reported a facile method for the synthesis of the CeO2/g-C3N4 hybrid with enhanced CO2 reduction and ciprofloxacin degradation performance using surface carboxylated g-C3N4 (C-g-C3N4) as the substrate. The characterization results demonstrated the abundant oxygen-containing groups of C-g-C3N4 in the CeO2/C-g-C3N4 hybrid can effectively improve the dispersion of CeO2 nanoparticles and enhance the interfacial bonding with the C-g-C3N4 substrate. Density functional theory (DFT) calculations showed that a built-in electric field was formed in the CeO2/C-g-C3N4 heterojunction, which can greatly improve the charge separation and transfer efficiency. Consequently, the yield of CO and the ciprofloxacin degradation efficiency have been remarkably improved. The maximum CO yield through CO2 photoreduction over 3%CeO2/C-g-C3N4 was 9.083, 3.922, and 2.868 times higher than that of pure CeO2, C-g-C3N4 and 3%CeO2/g-C3N4 bulk, respectively. The 3%CeO2/C-g-C3N4 heterojunction also showed excellent photoinduced oxidation activity for ciprofloxacin degradation with a 73% degradation efficiency in 2 h, which was 1.89 and 2.76 times higher than that of pure CeO2 and C-g-C3N4, respectively. Furthermore, a good photostability for a five cycle test of CO2 reduction was observed over the 3%CeO2/C-g-C3N4 hybrid. The possible photocatalytic mechanism was investigated by theoretical calculations and capture experiments to further understand the charge transfer behavior over the CeO2/C-g-C3N4 heterojunction for CO2 reduction and pollutant degradation.

中文翻译:

通过表面羧化作用增强CeO2 / g-C3N4杂化物的还原和氧化能力:性能和机理

CeO 2 / gC 3 N 4杂化体是一种具有光诱导氧化和还原能力的高效光催化剂,在太阳能应用中备受关注。本文中,我们报道了一种以表面羧化的gC 3 N 4(CgC 3 N 4)为底物,具有增强的CO 2还原和环丙沙星降解性能的CeO 2 / gC 3 N 4杂化物的合成方法。表征结果表明,CeO 2中具有丰富的CgC 3 N 4含氧基团/ CgC 3 N 4杂化物可以有效地改善CeO 2纳米颗粒的分散性,增强与CgC 3 N 4基体的界面键合。密度泛函理论(DFT)计算表明,在CeO 2 / CgC 3 N 4异质结中形成了内置电场,可以大大提高电荷的分离和转移效率。因此,CO的产率和环丙沙星的降解效率得到了显着提高。通过3%CeO 2 / CgC 3 N 4上的CO 2光还原获得的最大CO产量分别是纯CeO 2,CgC 3 N 4和3%CeO 2 / gC 3 N 4本体的9.083、3.922和2.868倍。3%CeO 2 / CgC 3 N 4异质结在环丙沙星降解中也表现出优异的光诱导氧化活性,在2小时内的降解效率为73%,分别比纯CeO 2和CgC 3 N 4分别高1.89和2.76倍。。此外,在3%CeO 2 / CgC上,观察到了CO 5还原五周期测试的良好光稳定性。3 N 4混合动力。通过理论计算和捕获实验研究了可能的光催化机理,以进一步了解CeO 2 / CgC 3 N 4异质结在CO 2还原和污染物降解方面的电荷转移行为。
更新日期:2020-07-21
down
wechat
bug