当前位置: X-MOL 学术Chem. Res. Toxicol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Introduction to Special Issue: Environmental Toxicology.
Chemical Research in Toxicology ( IF 4.1 ) Pub Date : 2020-06-15 , DOI: 10.1021/acs.chemrestox.0c00203
Jiayin Dai 1 , Yang Song 2 , Christopher S Lau 3
Affiliation  

This article is part of the Environmental Toxicology special issue. The increasing use and disposal of chemicals are linked to a variety of health issues that impact the world. Understanding the chemical and molecular basis of how emerging contaminants elicit adverse biological responses will fill critical gaps for management, risk assessment, and precaution. This special issue of Chemical Research in Toxicology focuses on Environmental Toxicology and includes contributions from leading researchers in this field worldwide. It contains 3 reviews and perspectives, 18 research articles and rapid reports, and 1 ToxWatch. These articles represent excellent examples of relevant current topics in environmental toxicology, including (1) identification of downstream metabolites of environmental contaminants, (2) remediating environmental contaminants and ensuring environmental sustainability and hygiene, and (3) elucidating biological impacts and adverse outcomes of exposure to contaminants. The studies included in the Environmental Toxicology special issue cover a variety of contaminants, including halogenated flame retardants, per- and polyfluoroalkyl substances, refrigerants, drugs, pesticides, plasticizers, heavy metals, active compounds of plants, and byproducts of fuel combustion and automobile exhaust. These important examples represent cutting-edge research and highlight the importance of this field. There is growing evidence that biotransformation and metabolism of environmental contaminants have significant impacts on toxicological behaviors; therefore, there are six articles addressing this area. For example, Lehmler and colleagues discovered the atroposelective disposition of a PCB 91 congener and identified its metabolites in cytochrome P450 reductase knockout mice. Further, Chan et al. propose the formation of cysteine, N-acetylcysteine, and glutathione conjugates of aristolochic acid I as a new detoxification pathway. Stapleton et al. identified and quantified human liver metabolites of several phase I and II triphenyl phosphate metabolites. Sleno et al. comprehensively studied the metabolites of bisphenol A using liquid chromatography-high-resolution tandem mass spectrometry. Finally, there are two separate studies addressing the biotransformation of environmental contaminants by cytochrome P450. Collective results emphasize that detoxication vs activation features of metabolic processes must be carefully determined on a case-by-case basis. A considerable part of the research in this special issue adopts the research method of computer simulation as an alternative for experimental study. Structure-based methods, for example, molecular docking and molecular dynamics simulations, have obvious advantages in the prediction of contaminant metabolic profiles, the characterization of contaminants/metabolites, and biomacromolecules interactions. In this regard, Tang et al. summarized recent advances in computational methods for the identification of structural alerts and their applications in toxicology. By combining molecular docking methods and in vitro experiments, Sheng et al. described and compared the binding characters of PFOS and 6:2 Cl-PFESA to HSA. Chen and colleagues developed a strategy of in silico screening of PPARγ agonists based on quantitative structure–activity relationship models. Finally, density functional theory calculations were used to investigate the biotransformation of 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane and dieldrin by cytochrome P450. This special issue also promotes the use of cutting-edge technologies to elucidate toxicities of environmental contaminants. In particular, omics approaches are prominent. Thus, Chen and colleagues defined altered DNA methylation and miRNA expression contributing to carcinogenesis of trichloroethylene. On the other hand, Zhao and colleagues identified changes in metabolic phenotypes in vivo. Finally, Gao et al. introduce the potential of proteomics to acquire early disease biomarkers for toxicology research. We hope that this special issue on Environmental Toxicology will promote a greater understanding of the toxicology of emerging environmental contaminants in diverse research communities united by the mechanism-driven concept of science published in Chemical Research in Toxicology. Finally, we would like to express our sincere appreciation to authors for contributing their outstanding and timely work. We also would like to thank the reviewers who provided their invaluable profound, original, and challenging insight. Views expressed in this editorial are those of the authors and not necessarily the views of the ACS. This article has not yet been cited by other publications.

中文翻译:

特刊简介:环境毒理学。

本文是 环境毒理学特刊。化学品使用和处置的增加与影响世界的各种健康问题有关。了解新兴污染物如何引起不良生物反应的化学和分子基础将填补管理,风险评估和预防措施的关键空白。本期《毒理学化学研究》特刊专注于环境毒理学,包括全球该领域领先研究人员的贡献。它包含3则评论和观点,18篇研究文章和快速报告以及1篇ToxWatch。这些文章代表了有关环境毒理学当前最新主题的出色实例,包括(1)鉴定环境污染物的下游代谢产物;(2)补救环境污染物并确保环境的可持续性和卫生;(3)阐明生物影响和暴露的不良后果。污染物。环境毒理学专刊中的研究涉及各种污染物,包括卤化阻燃剂,全氟和多氟烷基物质,制冷剂,药物,农药,增塑剂,重金属,植物活性化合物,以及燃料燃烧和汽车尾气的副产品。这些重要的例子代表了前沿研究,并突出了该领域的重要性。越来越多的证据表明,环境污染物的生物转化和新陈代谢对毒理学行为具有重大影响。因此,有六篇文章涉及这一领域。例如,Lehmler及其同事发现了PCB 91同源物的对质子选择性,并在细胞色素P450还原酶敲除小鼠中鉴定了其代谢产物。此外,Chan等。建议形成半胱氨酸,越来越多的证据表明,环境污染物的生物转化和新陈代谢对毒理学行为具有重大影响。因此,有六篇文章涉及这一领域。例如,Lehmler及其同事发现了PCB 91同源物的对质子选择性,并在细胞色素P450还原酶敲除小鼠中鉴定了其代谢产物。此外,Chan等。建议形成半胱氨酸,越来越多的证据表明,环境污染物的生物转化和新陈代谢对毒理学行为具有重大影响。因此,有六篇文章涉及这一领域。例如,Lehmler及其同事发现了PCB 91同源物的对质子选择性,并在细胞色素P450还原酶敲除小鼠中鉴定了其代谢产物。此外,Chan等。建议形成半胱氨酸,ñ-乙酰半胱氨酸和马兜铃酸I的谷胱甘肽结合物作为新的排毒途径。Stapleton等。鉴定并定量了人类肝脏代谢物的一些I和II期磷酸三苯酯代谢物。Sleno等。液相色谱-高分辨率串联质谱法全面研究了双酚A的代谢产物。最后,有两项单独的研究解决了细胞色素P450对环境污染物的生物转化。集体结果强调,必须根据具体情况仔细确定代谢过程的脱毒与激活特征。在本期特刊中,相当一部分研究采用计算机模拟的研究方法作为实验研究的替代方法。例如,基于结构的方法 分子对接和分子动力学模拟在预测污染物代谢概况,表征污染物/代谢物以及生物大分子相互作用方面具有明显的优势。对此,Tang等。总结了用于识别结构警报的计算方法及其在毒理学中的应用的最新进展。通过结合分子对接方法和体外实验,Sheng等。描述并比较了PFOS和6:2 Cl-PFESA与HSA的结合特性。陈和同事制定了计算机策略基于定量结构-活性关系模型的PPARγ激动剂筛选。最后,利用密度泛函理论计算研究了细胞色素P450对1,2-二溴-4-(1,2-二溴乙基)环己烷和狄氏剂的生物转化作用。本期专刊还促进了尖端技术的使用,以阐明环境污染物的毒性。组学方法尤其突出。因此,Chen和同事定义了改变的DNA甲基化和miRNA表达导致三氯乙烯致癌。另一方面,Zhao和同事发现了体内代谢表型的变化。最后,Gao等。介绍蛋白质组学的潜力,以获取早期疾病生物标志物以进行毒理学研究。我们希望,本期《环境毒理学》特刊将促进在各种研究领域中对新兴环境污染物的毒理学的进一步了解,并结合《毒理学化学研究》中发表的机制驱动科学概念进行统一。最后,我们要衷心感谢作者贡献自己的杰出和及时的著作。我们还要感谢审稿人提供了宝贵的,深刻的,原创的和富有挑战性的见解。本社论中表达的观点只是作者的观点,不一定是ACS的观点。本文尚未被其他出版物引用。
更新日期:2020-06-15
down
wechat
bug