当前位置: X-MOL 学术Phys. Rev. Materials › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Full characterization and modeling of graded interfaces in a high lattice-mismatch axial nanowire heterostructure
Physical Review Materials ( IF 3.4 ) Pub Date : 
D. V. Beznasyuk, P. Stepanov, J. L. Rouvière, F. Glas, M. Verheijen, J. Claudon, M. Hocevar

Controlling the strain level in nanowire heterostructures is critical for obtaining coherent interfaces of high crystalline quality and for the setting of functional properties such as photon emission, carrier mobility or piezoelectricity In a nanowire axial heterostructure featuring a sharp interface, strain is set by the materials lattice mismatch and the nanowire radius. Here, we show that introducing a graded interface in nanowire heterostructures offers an additional parameter to control strain. For a given interface length and lattice mismatch, we first derive theoretically the maximum nanowire radius below which coherent growth is possible. We validate these findings by growing and characterizing various In(Ga)As/GaAs nanowire heterostructures with graded interfaces. Furthermore, we perform chemical and structural characterization of the interface by combining energy-dispersive X-ray spectroscopy and high resolution transmission electron microscopy. In the case of coherent growth, we observe that the mismatch strain relaxes elastically on the side walls of the nanowire around the interface area, while the core of the nanowire remains partially strained. Moreover, our experimental data show good agreement with finite element calculations. This analysis confirms in particular that mechanical strain is largely reduced by interface grading. Overall, our work extends the parameter space for the design of nanowire heterostructures, thus opening new opportunities for nanowire optoelectronics.

中文翻译:

高晶格失配轴向纳米线异质结构中渐变界面的完整表征和建模

控制纳米线异质结构中的应变水平对于获得高结晶质量的相干界面以及设置功能性质(例如光子发射,载流子迁移率或压电性)至关重要,在具有尖锐界面的纳米线轴向异质结构中,应变由材料晶格确定不匹配和纳米线半径。在这里,我们表明在纳米线异质结构中引入渐变界面提供了控制应变的附加参数。对于给定的界面长度和晶格失配,我们首先从理论上推导出最大纳米线半径,在该最大半径以下,可以进行连贯生长。我们通过生长和表征具有梯度界面的各种In(Ga)As / GaAs纳米线异质结构来验证这些发现。此外,我们通过结合能量色散X射线光谱法和高分辨率透射电子显微镜对界面进行化学和结构表征。在相干生长的情况下,我们观察到失配应变在界面区域周围的纳米线的侧壁上弹性地松弛,而纳米线的核心保持部分应变。此外,我们的实验数据与有限元计算显示出良好的一致性。该分析特别证实了通过界面分级可以大大降低机械应变。总的来说,我们的工作扩展了纳米线异质结构设计的参数空间,从而为纳米线光电子学打开了新的机遇。在相干生长的情况下,我们观察到失配应变在界面区域周围的纳米线的侧壁上弹性地松弛,而纳米线的核心保持部分应变。此外,我们的实验数据显示与有限元计算有很好的一致性。该分析特别证实了通过界面分级可以大大降低机械应变。总的来说,我们的工作扩展了纳米线异质结构设计的参数空间,从而为纳米线光电子学打开了新的机遇。在相干生长的情况下,我们观察到失配应变在界面区域周围的纳米线的侧壁上弹性地松弛,而纳米线的核心保持部分应变。此外,我们的实验数据与有限元计算显示出良好的一致性。该分析特别证实了通过界面分级可以大大降低机械应变。总的来说,我们的工作扩展了纳米线异质结构设计的参数空间,从而为纳米线光电子学打开了新的机遇。该分析特别证实了通过界面分级可以大大降低机械应变。总的来说,我们的工作扩展了纳米线异质结构设计的参数空间,从而为纳米线光电子学打开了新的机遇。该分析特别证实了通过界面分级可以大大降低机械应变。总的来说,我们的工作扩展了纳米线异质结构设计的参数空间,从而为纳米线光电子学打开了新的机遇。
更新日期:2020-06-15
down
wechat
bug