当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Small-angle Neutron Scattering (SANS) Characterization of Clay- and Carbonate-rich Shale at Elevated Pressures
Energy & Fuels ( IF 5.3 ) Pub Date : 2020-06-12 , DOI: 10.1021/acs.energyfuels.0c01009
Chelsea W. Neil 1 , Rex P. Hjelm 2 , Marilyn E. Hawley 2 , Erik B. Watkins 3 , Cody Cockreham 1, 4, 5 , Di Wu 4, 5, 6, 7 , Yimin Mao 8 , Timothy B. Fischer 9 , M. Rebecca Stokes 9 , Hongwu Xu 1
Affiliation  

Unconventional oil and gas from shale formations have emerged as some of the fastest growing energy resources in the United States, providing both cleaner energy to consumers and reducing the nation’s reliance on energy imports. To properly harness these important natural resources, the nanopore structure of associated shales must be fully understood, particularly under hydraulic fracturing conditions, where they are exposed to both overburden compressive and hydrostatic fluid pressures. The current study uses small-angle neutron scattering (SANS) to characterize pore structure, including porosity, pore accessibility, and pore size distribution, in the 1–100 nm regime at elevated pressures for mineralogically distinct clay- and carbonate-rich shales from the Permian Basin. Unlike typical porosity measurement techniques, SANS is uniquely capable of characterizing both open and closed porosity, allowing measurement of how pore accessibility changes with pressure and determination of the size range of accessible versus inaccessible pores. The porosity of the clay-rich shale was 7.7%, compared to 0.51% for the carbonate-rich shale. However, only 2.6% of the nanopores in the carbonate-rich shale were inaccessible to water at 8 kPSI (55.1 MPa) compared to 7.8% for the clay-rich shale. Further analyses indicated that the closed pores fall within distinct size ranges, likely corresponding with the chemical nature of the pore host material. These results provide valuable insight into the effects of shale petrophysical properties on hydrocarbon extraction from unconventional reservoirs.

中文翻译:

高压下富含粘土和碳酸盐的页岩的小角中子散射(SANS)表征

来自页岩地层的非常规石油和天然气已成为美国增长最快的能源之一,既为消费者提供了清洁能源,又减少了美国对能源进口的依赖。为了正确利用这些重要的自然资源,必须充分了解相关页岩的纳米孔结构,尤其是在水力压裂条件下,使页岩暴露于上覆层压缩压力和静水压力。当前的研究使用小角度中子散射(SANS)来表征孔隙结构,包括孔隙度,孔隙可及性和孔径分布,在高压下1-100 nm范围内,从矿物学上讲是矿物学上独特的富含粘土和碳酸盐的页岩。二叠纪盆地。与典型的孔隙率测量技术不同,SANS独特地能够表征开放和封闭的孔隙度,从而能够测量孔隙可及性随压力如何变化,并确定可及与不可及孔隙的大小范围。富含粘土的页岩的孔隙率为7.7%,而富含碳酸盐的页岩的孔隙率为0.51%。然而,在8 kPSI(55.1 MPa)下,富含碳酸盐的页岩中只有2.6%的纳米孔无法进入水,而富含粘土的页岩只有7.8%。进一步的分析表明,封闭的孔落在不同的尺寸范围内,可能与孔主体材料的化学性质相对应。这些结果为了解页岩岩石物性对非常规油藏油气开采的影响提供了有价值的见解。允许测量孔隙可及性如何随压力变化,并确定可及与不可及孔隙的大小范围。富含粘土的页岩的孔隙率为7.7%,而富含碳酸盐的页岩的孔隙率为0.51%。然而,在8 kPSI(55.1 MPa)下,富含碳酸盐的页岩中只有2.6%的纳米孔无法进入水,而富含粘土的页岩只有7.8%。进一步的分析表明,封闭的孔落在不同的尺寸范围内,可能与孔主体材料的化学性质相对应。这些结果为了解页岩岩石物性对非常规油藏油气开采的影响提供了有价值的见解。可以测量孔隙可及性随压力如何变化,并确定可及与不可及孔隙的大小范围。富含粘土的页岩的孔隙率为7.7%,而富含碳酸盐的页岩的孔隙率为0.51%。然而,在8 kPSI(55.1 MPa)下,富含碳酸盐的页岩中只有2.6%的纳米孔无法进入水,而富含粘土的页岩中只有7.8%。进一步的分析表明,封闭的孔落在不同的尺寸范围内,可能与孔主体材料的化学性质相对应。这些结果为了解页岩岩石物性对非常规油藏油气开采的影响提供了有价值的见解。相比之下,富含碳酸盐的页岩为0.51%。然而,在8 kPSI(55.1 MPa)下,富含碳酸盐的页岩中只有2.6%的纳米孔无法进入水,而富含粘土的页岩中只有7.8%。进一步的分析表明,封闭的孔落在不同的尺寸范围内,可能与孔主体材料的化学性质相对应。这些结果为页岩岩石物性对非常规油藏油气开采的影响提供了有价值的见解。相比之下,富含碳酸盐的页岩为0.51%。然而,在8 kPSI(55.1 MPa)下,富含碳酸盐的页岩中只有2.6%的纳米孔无法进入水,而富含粘土的页岩只有7.8%。进一步的分析表明,封闭的孔落在不同的尺寸范围内,可能与孔主体材料的化学性质相对应。这些结果为了解页岩岩石物性对非常规油藏油气开采的影响提供了有价值的见解。
更新日期:2020-07-16
down
wechat
bug