当前位置: X-MOL 学术Shock Vib. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Metamaterial-Inspired Structure for Simultaneous Vibration Attenuation and Energy Harvesting
Shock and Vibration ( IF 1.6 ) Pub Date : 2020-06-13 , DOI: 10.1155/2020/4063025
Winner Anigbogu 1 , Hamzeh Bardaweel 1, 2, 3
Affiliation  

In this article, a magnetomechanical metamaterial structure capable of simultaneous vibration attenuation and energy harvesting is presented. The structure consists of periodically arranged local resonators combining cantilever beams and permanent magnet-coil systems. A prototype of the metamaterial dual-function structure is fabricated, and models are developed. Results show good agreement between model simulation and experiment. Two frequency bandgaps are measured: 205–257 Hz and 587–639 Hz. Within these bandgaps, vibrations are completely attenuated. The level of vibration attenuation in the first bandgap is substantially larger than the level of vibration attenuation observed in the second bandgap. Mode shapes suggest that bending deformations experienced by the local resonators in the second bandgap are less than the deformations experienced in the first bandgap, and most vibrational energy is localized within the first bandgap where the fundamental resonant frequency is located, i.e., 224 Hz. The ability of the fabricated metamaterial structure to harvest electric power in these bandgaps is examined. Results show that vibration attenuation and energy harvesting characteristics of the metamaterial structure are coupled. Stronger vibration attenuation within the first bandgap has led to enhanced energy harvesting capabilities within this bandgap. Power measurements at optimum load resistance of 15 Ω reveal that maximum power generated within the first bandgap reaches 5.2 µW at 245 Hz. Compared with state-of-the-art, the metamaterial structure presented here shows a significant improvement in electric power generation, at considerably lower load resistance, while maintaining the ability to attenuate undesired vibrations within the frequency bandgap.

中文翻译:

同时振动衰减和能量收集的超材料启发结构。

在本文中,提出了一种能够同时进行振动衰减和能量收集的磁机械超材料结构。该结构由周期性布置的本地谐振器组成,这些谐振器结合了悬臂梁和永磁线圈系统。制造了超材料双功能结构的原型,并开发了模型。结果表明,模型仿真与实验结果吻合良好。测量了两个频带间隙:205–257 Hz和587–639 Hz。在这些带隙内,振动被完全衰减。第一带隙中的振动衰减水平明显大于第二带隙中的振动衰减水平。模式形状表明,第二带隙中的局部谐振器所经历的弯曲变形小于第一带隙中所经​​历的变形,并且大多数振动能量位于基本谐振频率所在的第一带隙中,即224Hz。检查了制造的超材料结构在这些带隙中收集电能的能力。结果表明,超材料结构的振动衰减和能量收集特性是耦合的。第一个带隙内较强的振动衰减导致该带隙内能量收集能力增强。在最佳负载电阻为15Ω时的功率测量表明,在第一带隙内产生的最大功率达到5.2 大部分的振动能量集中在基本共振频率所在的第一带隙内,即224 Hz。检查了制造的超材料结构在这些带隙中收集电能的能力。结果表明,超材料结构的振动衰减和能量收集特性是耦合的。第一个带隙内较强的振动衰减导致该带隙内能量收集能力增强。在最佳负载电阻为15Ω时的功率测量表明,在第一带隙内产生的最大功率达到5.2 大部分的振动能量集中在基本共振频率所在的第一带隙内,即224 Hz。检查了制造的超材料结构在这些带隙中收集电能的能力。结果表明,超材料结构的振动衰减和能量收集特性是耦合的。第一个带隙内较强的振动衰减导致该带隙内能量收集能力增强。在最佳负载电阻为15Ω时的功率测量表明,在第一带隙内产生的最大功率达到5.2 结果表明,超材料结构的振动衰减和能量收集特性是耦合的。第一个带隙内较强的振动衰减导致该带隙内能量收集能力增强。在最佳负载电阻为15Ω时的功率测量表明,在第一带隙内产生的最大功率达到5.2 结果表明,超材料结构的振动衰减和能量收集特性是耦合的。第一个带隙内更强的振动衰减导致该带隙内能量收集能力增强。在最佳负载电阻为15Ω时的功率测量表明,在第一带隙内产生的最大功率达到5.2 μ W上245赫兹。与现有技术相比,此处介绍的超材料结构在显着降低负载电阻的同时,显示了发电方面的显着改善,同时保持了衰减频带隙内不希望有的振动的能力。
更新日期:2020-06-13
down
wechat
bug