当前位置: X-MOL 学术ACS Appl. Bio Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model
ACS Applied Bio Materials ( IF 4.7 ) Pub Date : 2020-06-13 , DOI: 10.1021/acsabm.0c00203
Ghada Hassan 1 , Nina Forsman 2 , Xing Wan 3 , Leena Keurulainen 1 , Luis M Bimbo 4 , Susanne Stehl 5 , Frits van Charante 6 , Michael Chrubasik 7, 8 , Aruna S Prakash 7, 8 , Leena-Sisko Johansson 2 , Declan C Mullen 4 , Blair F Johnston 7, 8 , Ralf Zimmermann 5 , Carsten Werner 5 , Jari Yli-Kauhaluoma 1 , Tom Coenye 6 , Per E J Saris 3 , Monika Österberg 2 , Vânia M Moreira 1, 4
Affiliation  

Bacterial biofilm infections incur massive costs on healthcare systems worldwide. Particularly worrisome are the infections associated with pressure ulcers and prosthetic, plastic, and reconstructive surgeries, where staphylococci are the major biofilm-forming pathogens. Non-leaching antimicrobial surfaces offer great promise for the design of bioactive coatings to be used in medical devices. However, the vast majority are cationic, which brings about undesirable toxicity. To circumvent this issue, we have developed antimicrobial nanocellulose films by direct functionalization of the surface with dehydroabietic acid derivatives. Our conceptually unique design generates non-leaching anionic surfaces that reduce the number of viable staphylococci in suspension, including drug-resistant Staphylococcus aureus, by an impressive 4–5 log units, upon contact. Moreover, the films clearly prevent bacterial colonization of the surface in a model mimicking the physiological environment in chronic wounds. Their activity is not hampered by high protein content, and they nurture fibroblast growth at the surface without causing significant hemolysis. In this work, we have generated nanocellulose films with indisputable antimicrobial activity demonstrated using state-of-the-art models that best depict an “in vivo scenario”. Our approach is to use fully renewable polymers and find suitable alternatives to silver and cationic antimicrobials.

中文翻译:

非浸出、高度生物相容的纳米纤维素表面,可在人造真皮模型中有效抵抗细菌污染

细菌生物膜感染给全球医疗保健系统带来巨大成本。特别令人担忧的是与压疮和修复、整形和重建手术相关的感染,其中葡萄球菌是主要的生物膜形成病原体。非浸出抗菌表面为用于医疗器械的生物活性涂层的设计提供了广阔的前景。然而,绝大多数是阳离子,这带来了不希望的毒性。为了规避这个问题,我们通过用脱氢枞酸衍生物直接功能化表面来开发抗菌纳米纤维素薄膜。我们在概念上独特的设计产生非浸出阴离子表面,可减少悬浮液中活葡萄球菌的数量,包括耐药金黄色葡萄球菌,通过令人印象深刻的 4-5 对数单位,在接触时。此外,在模拟慢性伤口生理环境的模型中,这些薄膜清楚地防止了表面的细菌定植。它们的活性不受高蛋白质含量的阻碍,它们在表面培养成纤维细胞生长而不会引起明显的溶血。在这项工作中,我们生成了具有无可争辩的抗菌活性的纳米纤维素薄膜,这些薄膜使用最能描述“体内场景”的最先进模型进行了证明。我们的方法是使用完全可再生的聚合物,并寻找银和阳离子抗菌剂的合适替代品。
更新日期:2020-07-20
down
wechat
bug