当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes
Science ( IF 56.9 ) Pub Date : 2020-06-11 , DOI: 10.1126/science.abb1570
Itai Epstein 1 , David Alcaraz 1 , Zhiqin Huang 2, 3 , Varun-Varma Pusapati 1 , Jean-Paul Hugonin 4 , Avinash Kumar 1 , Xander M Deputy 2, 3 , Tymofiy Khodkov 1 , Tatiana G Rappoport 5, 6 , Jin-Yong Hong 7 , Nuno M R Peres 5, 8 , Jing Kong 7 , David R Smith 2, 3 , Frank H L Koppens 1, 9
Affiliation  

Light under compression The ability to confine light to volumes much smaller than the wavelength produces high electromagnetic fields that can then be exploited in chemical and biological sensing and detection applications. Using silver nanocubes placed on a graphene surface, Epstein et al. developed a single, nanometer-scale acoustic graphene plasmon cavity device that can confine mid-infrared and terahertz radiation with mode volume confinement factors of 5 × 1010. With the response being dependent on the size of the nanocube and electrically tunable, the results demonstrate a powerful platform with which to develop sensors in what has been a challenging wavelength regime where molecular fingerprints reside. Science, this issue p. 1219 Graphene-based nanocavities can compress infrared light to ultrasmall mode volumes. Acoustic graphene plasmons are highly confined electromagnetic modes carrying large momentum and low loss in the mid-infrared and terahertz spectra. However, until now they have been restricted to micrometer-scale areas, reducing their confinement potential by several orders of magnitude. Using a graphene-based magnetic resonator, we realized single, nanometer-scale acoustic graphene plasmon cavities, reaching mode volume confinement factors of ~5 × 1010. Such a cavity acts as a mid-infrared nanoantenna, which is efficiently excited from the far field and is electrically tunable over an extremely large broadband spectrum. Our approach provides a platform for studying ultrastrong-coupling phenomena, such as chemical manipulation via vibrational strong coupling, as well as a path to efficient detectors and sensors operating in this long-wavelength spectral range.

中文翻译:

具有超压缩模式体积的单个石墨烯等离子体腔的远场激发

压缩光 将光限制在远小于波长的体积内的能力会产生高电磁场,然后可以在化学和生物传感和检测应用中加以利用。Epstein 等人使用放置在石墨烯表面上的银纳米立方体。开发了一种单一的纳米级声学石墨烯等离子体腔装置,它可以限制模式体积限制因子为 5 × 1010 的中红外和太赫兹辐射。响应取决于纳米立方体的大小和电可调,结果表明强大的平台,用于在分子指纹所在的具有挑战性的波长范围内开发传感器。科学,这个问题 p。1219 基于石墨烯的纳米腔可以将红外光压缩到超小模体积。声学石墨烯等离子体是高度受限的电磁模式,在中红外和太赫兹光谱中具有大动量和低损耗。然而,到目前为止,它们仅限于微米级区域,将它们的限制潜力降低了几个数量级。使用基于石墨烯的磁谐振器,我们实现了单个纳米级声学石墨烯等离子体腔,达到了 ~5 × 1010 的模式体积限制因子。这种腔充当中红外纳米天线,从远场有效激发并且可以在极大的宽带频谱上进行电调谐。我们的方法为研究超强耦合现象提供了一个平台,例如通过振动强耦合进行化学操作,
更新日期:2020-06-11
down
wechat
bug