当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy
Science ( IF 56.9 ) Pub Date : 2020-06-11 , DOI: 10.1126/science.abb8501
Boyang Qin 1, 2 , Chenyi Fei 1, 3 , Andrew A Bridges 1, 4 , Ameya A Mashruwala 1, 4 , Howard A Stone 2 , Ned S Wingreen 1, 3, 5 , Bonnie L Bassler 1, 4
Affiliation  

Biofilm formation from cell fountains Bacteria form three-dimensional communities called biofilms that are ubiquitous in nature and underlie human infections. Medically, biofilms are problematic because they protect resident cells from antibiotics. Although biofilms have been intensively studied, we do not understand how they develop cell by cell. Micron-sized bacteria are densely packed within biofilms, making it exceptionally challenging to track their movements. Qin et al. studied biofilm formation in the pathogen and model biofilm former Vibrio cholerae (see the Perspective by Dal Co and Brenner). The authors combined light-sheet microscopy with cell labeling to map the trajectories of a biofilm founder cell and its descendants in space and time as they built a biofilm. The findings revealed that as the bacteria reproduce, a bacterial “fountain” drives biofilm expansion and dictates the final positions of the offspring. Science, this issue p. 71; see also p. 30 Tracking cells throughout bacterial biofilm development reveals how multicellular structures form from a single founder cell. Bacterial biofilms represent a basic form of multicellular organization that confers survival advantages to constituent cells. The sequential stages of cell ordering during biofilm development have been studied in the pathogen and model biofilm-former Vibrio cholerae. It is unknown how spatial trajectories of individual cells and the collective motions of many cells drive biofilm expansion. We developed dual-view light-sheet microscopy to investigate the dynamics of biofilm development from a founder cell to a mature three-dimensional community. Tracking of individual cells revealed two distinct fates: one set of biofilm cells expanded ballistically outward, while the other became trapped at the substrate. A collective fountain-like flow transported cells to the biofilm front, bypassing members trapped at the substrate and facilitating lateral biofilm expansion. This collective flow pattern was quantitatively captured by a continuum model of biofilm growth against substrate friction. Coordinated cell movement required the matrix protein RbmA, without which cells expanded erratically. Thus, tracking cell lineages and trajectories in space and time revealed how multicellular structures form from a single founder cell.

中文翻译:

光片显微镜显示细菌生物膜中的细胞位置命运和集体喷泉流

细胞喷泉形成的生物膜细菌形成了称为生物膜的三维群落,它们在自然界中无处不在,是人类感染的基础。在医学上,生物膜是有问题的,因为它们保护常驻细胞免受抗生素的侵害。尽管已经对生物膜进行了深入研究,但我们不了解它们如何逐个细胞地发育。微米大小的细菌密集地包裹在生物膜中,这使得追踪它们的运动变得异常具有挑战性。秦等人。研究了病原体和模型生物膜前霍乱弧菌中的生物膜形成(参见 Dal Co 和 Brenner 的观点)。作者将光片显微镜与细胞标记相结合,在构建生物膜时绘制了生物膜创始细胞及其后代在空间和时间上的轨迹。研究结果表明,随着细菌的繁殖,细菌“喷泉”驱动生物膜扩张并决定后代的最终位置。科学,本期第 3 页。71; 另见第 30 在整个细菌生物膜发育过程中追踪细胞揭示了多细胞结构是如何从单个创始细胞形成的。细菌生物膜代表了一种基本形式的多细胞组织,它赋予组成细胞生存优势。已经在病原体和模型生物膜形成者霍乱弧菌中研究了生物膜发育过程中细胞排序的连续阶段。目前尚不清楚单个细胞的空间轨迹和许多细胞的集体运动如何驱动生物膜扩张。我们开发了双视图光片显微镜来研究从创始细胞到成熟的三维群落的生物膜发育动态。对单个细胞的追踪揭示了两种不同的命运:一组生物膜细胞向外弹道扩张,而另一组则被困在基质上。集体喷泉般的流动将细胞运送到生物膜前部,绕过被困在基板上的成员并促进横向生物膜扩张。这种集体流动模式被生物膜生长对抗基质摩擦的连续模型定量捕获。协调的细胞运动需要基质蛋白 RbmA,没有它,细胞就会不规律地扩张。因此,在空间和时间上跟踪细胞谱系和轨迹揭示了多细胞结构是如何从单个创始细胞形成的。集体喷泉般的流动将细胞运送到生物膜前部,绕过被困在基板上的成员并促进横向生物膜扩张。这种集体流动模式被生物膜生长对抗基质摩擦的连续模型定量捕获。协调的细胞运动需要基质蛋白 RbmA,没有它,细胞就会不规律地扩张。因此,在空间和时间上跟踪细胞谱系和轨迹揭示了多细胞结构是如何从单个创始细胞形成的。集体喷泉般的流动将细胞运送到生物膜前部,绕过被困在基板上的成员并促进横向生物膜扩张。这种集体流动模式被生物膜生长对抗基质摩擦的连续模型定量捕获。协调的细胞运动需要基质蛋白 RbmA,没有它,细胞就会不规律地扩张。因此,在空间和时间上跟踪细胞谱系和轨迹揭示了多细胞结构是如何从单个创始细胞形成的。
更新日期:2020-06-11
down
wechat
bug