当前位置: X-MOL 学术Macromol. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Methodology of Hydrodynamic Complexity in Topologically Hyper‐Branched Polymers Undergoing Hierarchical Multiple Relaxations
Macromolecular Chemistry and Physics ( IF 2.5 ) Pub Date : 2020-06-11 , DOI: 10.1002/macp.202000052
Haibao Lu 1 , Xiaodong Wang 1 , Mokarram Hossain 2 , Yong Qing Fu 3
Affiliation  

A hydrodynamic model is proposed to describe conformational relaxation of molecules, viscoelasticity of arms, and hierarchical multiple‐shape memory effect (multi‐SME) of hyper‐branched polymer. Fox–Flory and Boltzmann’s principles are employed to characterize and predict the hierarchical relaxations and their multi‐SMEs in hyper‐branched polymers. A constitutive relationship among relaxation time, molecular weight, glass transition temperature, and viscoelastic modulus is then formulated. Results reveal that molecular weight and number of arms of the topologically hyper‐branched polymers significantly influence their hydrodynamic relaxations and shape memory behaviors. The effectiveness of model is demonstrated by applying it to predict mechanical and shape recovery behaviors of hyper‐branched polymers, and the theoretical results show good agreements with the experimental ones. This study is expected to provide an effective guidance on designing multi‐SME in topologically hyper‐branched polymers.

中文翻译:

分级多重松弛的拓扑超支化聚合物中流体动力学复杂性的方法学

提出了一种流体动力学模型来描述分子的构象弛豫,臂的粘弹性和超支化聚合物的分层多形状记忆效应(multi-SME)。Fox–Flory和Boltzmann原理用于表征和预测超支化聚合物中的层级松弛及其多SME。然后建立了弛豫时间,分子量,玻璃化转变温度和粘弹性模量之间的本构关系。结果表明,拓扑结构超支化聚合物的分子量和臂数显着影响其流体力学松弛和形状记忆行为。通过将模型应用于预测超支化聚合物的力学和形状恢复行为,证明了该模型的有效性,理论结果与实验结果吻合良好。预期该研究将为设计拓扑超支化聚合物中的多SME提供有效的指导。
更新日期:2020-06-11
down
wechat
bug