当前位置: X-MOL 学术Exp. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fast triple-parameter extremum seeking exemplified for jet control
Experiments in Fluids ( IF 2.4 ) Pub Date : 2020-06-12 , DOI: 10.1007/s00348-020-02953-3
D. W. Fan , Y. Zhou , B. R. Noack

Abstract A fast triple-parameter extremum seeking method is applied for jet control based on the pioneering work of Gelbert et al. (J Process Control 22(4):700, 2012). The simultaneous adaptation of three input parameters takes less time than the single-input adaptation of each parameter combined. The key enablers are phase-shifted sinusoids for the input each of which is evaluated by an extended Kalman filter (EKF). An acceleration of the adaption is obtained by a combined EKF coupling the output to all inputs. The method is illustrated for an analytical optimization problem and experimentally demonstrated for a turbulent jet mixing control. The considered Reynolds numbers $${\hbox {Re}}_D$$ Re D based on the jet exit diameter and velocity are 5700, 8000 and 13,300. The main jet is manipulated by a pulsed radially injected minijet which is varied by a mass flow controller and an electromagnetic valve up to high frequencies. The mixing performance is characterized by the centerline jet decay rate and monitored by a hot-wire sensor five diameters downstream at the end of the potential core. The proposed triple-parameter extremum seeking method optimizes the actuation mass flow ratio, frequency and duty cycle. The decay rate increases 11-fold from the unforced reference value of 0.05 to the optimal actuation level of 0.56. The reproducibility is demonstrated with various initial actuation parameters. Moreover, the adaptive control robustly tracks the optimal open-loop actuation for varying $${\hbox {Re}}_D$$ Re D ; the optimal decay rate remains unchanged given the mass flow rate, frequency and duty cycle are optimized. The unforced and actuated flow are investigated with hot wires and visualizations. The three-input ES significantly outperforms a two-parameter optimization for the same configuration in multiple respects (Wu et al. in AIAA J 56(4):1463, 2018): First, the jet decay rate is $$8\%$$ 8 % faster. Second, the convergence time for three parameters is only $$25 \%$$ 25 % of the adaptation period of two parameters when $${\hbox {Re}}_D$$ Re D is varied. Finally, the current steady-state error is $$45\%$$ 45 % less than that of the two-parameter optimization. We expect the proposed triple-parameter extremum seeking to be applicable for a large range of flow control experiments. Graphic abstract

中文翻译:

以射流控制为例的快速三参数极值搜索

摘要 在 Gelbert 等人的开创性工作的基础上,将一种快速三参数极值搜索方法应用于射流控制。(J 过程控制 22(4):700, 2012)。三个输入参数的同时自适应比每个参数的单输入自适应组合花费的时间更少。关键促成因素是输入的相移正弦波,每个正弦波都由扩展卡尔曼滤波器 (EKF) 评估。通过将输出耦合到所有输入的组合 EKF 来获得适应的加速。该方法针对分析优化问题进行了说明,并针对湍流射流混合控制进行了实验证明。基于射流出口直径和速度的考虑的雷诺数 $${\hbox {Re}}_D$$ Re D 为 5700、8000 和 13,300。主射流由脉冲径向喷射微型射流控制,该微型射流由质量流量控制器和电磁阀变化至高频。混合性能的特点是中心线射流衰减率,并由潜在核心末端下游五个直径的热线传感器监测。提出的三参数极值搜索方法优化了驱动质量流量比、频率和占空比。衰减率从非受迫参考值 0.05 增加到最佳驱动水平 0.56,增加了 11 倍。用各种初始驱动参数证明了重现性。此外,自适应控制稳健地跟踪变化的 $${\hbox {Re}}_D$$ Re D 的最佳开环驱动;给定质量流量,最佳衰减率保持不变,频率和占空比得到优化。使用热线和可视化来研究非受力和驱动流。三输入 ES 在多个方面显着优于相同配置的双参数优化(Wu 等人在 AIAA J 56(4):1463, 2018 中):首先,喷射衰减率为 $$8\%$$快了 8%。其次,当 $${\hbox {Re}}_D$$ Re D 变化时,三个参数的收敛时间仅为 $$25\%$$ 两个参数适应期的 25%。最后,当前的稳态误差比双参数优化的误差小 $$45\%$$ 45%。我们期望所提出的三参数极值寻求适用于大范围的流量控制实验。图形摘要 三输入 ES 在多个方面显着优于相同配置的双参数优化(Wu 等人在 AIAA J 56(4):1463, 2018 中):首先,喷射衰减率为 $$8\%$$快了 8%。其次,当 $${\hbox {Re}}_D$$ Re D 变化时,三个参数的收敛时间仅为 $$25\%$$ 两个参数适应期的 25%。最后,当前的稳态误差比双参数优化的误差小 $$45\%$$ 45%。我们期望所提出的三参数极值寻求适用于大范围的流量控制实验。图形摘要 三输入 ES 在多个方面显着优于相同配置的双参数优化(Wu 等人在 AIAA J 56(4):1463, 2018 中):首先,喷射衰减率为 $$8\%$$快了 8%。其次,当 $${\hbox {Re}}_D$$ Re D 变化时,三个参数的收敛时间仅为 $$25\%$$ 两个参数适应期的 25%。最后,当前的稳态误差比双参数优化的误差小 $$45\%$$ 45%。我们期望所提出的三参数极值寻求适用于大范围的流量控制实验。图形摘要 当 $${\hbox {Re}}_D$$ Re D 变化时,三个参数的收敛时间仅为 $$25 \%$$ 两个参数适应期的 25%。最后,当前的稳态误差比双参数优化的误差小 $$45\%$$ 45%。我们期望所提出的三参数极值寻求适用于大范围的流量控制实验。图形摘要 当 $${\hbox {Re}}_D$$ Re D 变化时,三个参数的收敛时间仅为 $$25 \%$$ 两个参数适应期的 25%。最后,当前的稳态误差比双参数优化的误差小 $$45\%$$ 45%。我们期望所提出的三参数极值寻求适用于大范围的流量控制实验。图形摘要
更新日期:2020-06-12
down
wechat
bug