当前位置: X-MOL 学术Ann. Glaciol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sea-ice production and air/ice/ocean/biogeochemistry interactions in the Ross Sea during the PIPERS 2017 autumn field campaign
Annals of Glaciology ( IF 2.9 ) Pub Date : 2020-06-11 , DOI: 10.1017/aog.2020.31
S. F. Ackley , S. Stammerjohn , T. Maksym , M. Smith , J. Cassano , P. Guest , J.-L. Tison , B. Delille , B. Loose , P. Sedwick , L. DePace , L. Roach , J. Parno

The Ross Sea is known for showing the greatest sea-ice increase, as observed globally, particularly from 1979 to 2015. However, corresponding changes in sea-ice thickness and production in the Ross Sea are not known, nor how these changes have impacted water masses, carbon fluxes, biogeochemical processes and availability of micronutrients. The PIPERS project sought to address these questions during an autumn ship campaign in 2017 and two spring airborne campaigns in 2016 and 2017. PIPERS used a multidisciplinary approach of manned and autonomous platforms to study the coupled air/ice/ocean/biogeochemical interactions during autumn and related those to spring conditions. Unexpectedly, the Ross Sea experienced record low sea ice in spring 2016 and autumn 2017. The delayed ice advance in 2017 contributed to (1) increased ice production and export in coastal polynyas, (2) thinner snow and ice cover in the central pack, (3) lower sea-ice Chl-a burdens and differences in sympagic communities, (4) sustained ocean heat flux delaying ice thickening and (5) a melting, anomalously southward ice edge persisting into winter. Despite these impacts, airborne observations in spring 2017 suggest that winter ice production over the continental shelf was likely not anomalous.

中文翻译:

PIPERS 2017秋季野外活动期间罗斯海的海冰生产和空气/冰/海洋/生物地球化学相互作用

罗斯海以显示出最大的海冰增加而闻名,正如全球观察到的那样,特别是从 1979 年到 2015 年。然而,不知道罗斯海海冰厚度和产量的相应变化,也不知道这些变化如何影响水质量、碳通量、生物地球化学过程和微量营养素的可用性。PIPERS 项目试图在 2017 年的秋季舰船运动以及 2016 年和 2017 年的两次春季空降运动中解决这些问题。PIPERS 使用载人和自主平台的多学科方法来研究秋季和期间耦合的空气/冰/海洋/生物地球化学相互作用与春季条件有关。出乎意料的是,罗斯海在 2016 年春季和 2017 年秋季经历了创纪录的低海冰。一种同域群落的负担和差异,(4)持续的海洋热通量延迟了冰的增厚和(5)融化,异常向南的冰边缘持续到冬季。尽管有这些影响,但 2017 年春季的空中观测表明,大陆架上的冬季结冰可能没有异常。
更新日期:2020-06-11
down
wechat
bug