当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enzyme-powered Janus platelet cell robots for active and targeted drug delivery
Science Robotics ( IF 25.0 ) Pub Date : 2020-06-10 , DOI: 10.1126/scirobotics.aba6137
Songsong Tang 1, 2 , Fangyu Zhang 1 , Hua Gong 1 , Fanan Wei 1 , Jia Zhuang 1 , Emil Karshalev 1 , Berta Esteban-Fernández de Ávila 1 , Chuying Huang 1 , Zhidong Zhou 1 , Zhengxing Li 1 , Lu Yin 1 , Haifeng Dong 2 , Ronnie H. Fang 1 , Xueji Zhang 2 , Liangfang Zhang 1 , Joseph Wang 1
Affiliation  

Transforming natural cells into functional biocompatible robots capable of active movement is expected to enhance the functions of the cells and revolutionize the development of synthetic micromotors. However, present cell-based micromotor systems commonly require the propulsion capabilities of rigid motors, external fields, or harsh conditions, which may compromise biocompatibility and require complex actuation equipment. Here, we report on an endogenous enzyme-powered Janus platelet micromotor (JPL-motor) system prepared by immobilizing urease asymmetrically onto the surface of natural platelet cells. This Janus distribution of urease on platelet cells enables uneven decomposition of urea in biofluids to generate enhanced chemophoretic motion. The cell surface engineering with urease has negligible impact on the functional surface proteins of platelets, and hence, the resulting JPL-motors preserve the intrinsic biofunctionalities of platelets, including effective targeting of cancer cells and bacteria. The efficient propulsion of JPL-motors in the presence of the urea fuel greatly enhances their binding efficiency with these biological targets and improves their therapeutic efficacy when loaded with model anticancer or antibiotic drugs. Overall, asymmetric enzyme immobilization on the platelet surface leads to a biogenic microrobotic system capable of autonomous movement using biological fuel. The ability to impart self-propulsion onto biological cells, such as platelets, and to load these cellular robots with a variety of functional components holds considerable promise for developing multifunctional cell-based micromotors for a variety of biomedical applications.



中文翻译:

酶促的Janus血小板细胞机器人用于主动和靶向药物输送

将天然细胞转变为能够主动运动的功能性生物相容性机器人,有望增强细胞的功能,并彻底改变合成微电机的发展。然而,当前基于细胞的微电机系统通常需要刚性电机,外部场或恶劣条件的推进能力,这可能会损害生物相容性并需要复杂的致动设备。在这里,我们报告通过内源酶驱动的Janus血小板微电机(JPL电机)系统制备的系统,该系统通过将脲酶不对称地固定在天然血小板细胞的表面上而制备。尿素酶在血小板细胞上的这种Janus分布使生物流体中的尿素不均匀分解,从而增强了化学泳动。用脲酶进行的细胞表面工程改造对血小板的功能表面蛋白的影响可忽略不计,因此,所得的JPL马达保留了血小板的固有生物功能,包括有效靶向癌细胞和细菌。在装有模型抗癌药或抗生素药物的情况下,在尿素燃料存在下对JPL发动机的有效推进极大地增强了它们与这些生物靶标的结合效率,并提高了它们的治疗功效。总体而言,将不对称酶固定在血小板表面会导致能够使用生物燃料自主运动的生物微机器人系统。将自我推进作用赋予生物细胞(如血小板)的能力,

更新日期:2020-06-10
down
wechat
bug