当前位置: X-MOL 学术Chem. Eng. Res. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stick-slip behavior of sessile drop on the surfaces with irregular roughnesses
Chemical Engineering Research and Design ( IF 3.9 ) Pub Date : 2020-06-11 , DOI: 10.1016/j.cherd.2020.06.001
Mohammad Azadi Tabar , Mohammad Shayesteh , Yousef Shafiei , Mohammad Hossein Ghazanfari

In this work, sessile drop and low-bond axisymmetric drop shape analysis methods were coupled to provide some new aspects on stick-slip behavior as well as stick time of a drop on calcite surfaces. Slightly hydrophobic calcite surfaces typified with three irregular roughnesses were used to create irregular surfaces to mimic defects for the water-calcite-air systems. Polishing papers of 200, 600, and 1200 grit and a polishing machine were used to prepare surfaces. X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transform infrared, and atomic force microscopy techniques were employed to evaluate the chemical and physical properties of surfaces. A model was developed to predict stick time based on the Laplace equation to take into account the effect of gravity which is neglected in the spherical cap model. An irregular stick–slip behavior of the three-phase contact line was observed for different roughness levels. Increasing roughness level from nono-metric to micrometric scale induced variation of 77.4°, 9.0e−03 mN/m, 1.23 mN/m to 67°, 293.0e−03 mN/m, 7.20 mN/m for the datum contact angle, scaled energy barrier, and the unbalanced Young force per unit length, respectively. Comparison of the models predictions and the obtained experimental data of stick times in this work, showed that the developed model is more accurate than the spherical cap model. This work could provide new insights into the wetting phenomenon of surfaces with irregular roughnesses.



中文翻译:

无规表面上无柄滴的粘滑行为

在这项工作中,固着液滴和低键轴对称液滴形状分析方法相结合,为方解石表面的粘滑行为以及粘滞时间提供了一些新的方面。用具有三个不规则粗糙度的典型疏水性方解石表面来创建不规则表面,以模仿水-方解石-空气系统的缺陷。使用200、600和1200粒度的抛光纸和抛光机准备表面。X射线衍射,能量色散X射线光谱,傅立叶变换红外光谱和原子力显微镜技术被用来评估表面的化学和物理性质。根据拉普拉斯方程,开发了一个模型来预测粘着时间,并考虑到了球冠模型中忽略的重力影响。对于不同的粗糙度水平,观察到了三相接触线的不规则粘滑行为。从非公制到微米级的粗糙度级别增加,导致基准接触角从77.4°,9.0e-03 mN / m,1.23 mN / m到67°,293.0e-03 mN / m,7.20 mN / m的变化,缩放的能量屏障,以及每单位长度的不平衡杨氏力。将模型预测结果与所获得的粘着时间实验数据进行比较,表明所开发的模型比球冠模型更准确。这项工作可以为具有不规则粗糙度的表面的润湿现象提供新的见解。基准接触角,按比例缩放的能垒和每单位长度的不平衡杨氏力分别为23 mN / m至67°,293.0e-03 mN / m,7.20 mN / m。将模型预测结果与所获得的粘着时间实验数据进行比较,表明所开发的模型比球冠模型更准确。这项工作可以为具有不规则粗糙度的表面的润湿现象提供新的见解。基准接触角,按比例缩放的能垒和每单位长度的不平衡杨氏力分别为23 mN / m至67°,293.0e-03 mN / m,7.20 mN / m。将模型预测结果与所获得的粘着时间实验数据进行比较,表明所开发的模型比球冠模型更准确。这项工作可以为具有不规则粗糙度的表面的润湿现象提供新的见解。

更新日期:2020-06-11
down
wechat
bug