当前位置: X-MOL 学术Rail. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Power management in co-phase traction power supply system with super capacitor energy storage for electrified railways
Railway Engineering Science Pub Date : 2020-02-28 , DOI: 10.1007/s40534-020-00206-x
Xiaohong Huang , Qinyu Liao , Qunzhan Li , Sida Tang , Ke Sun

Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical, efficient and sustainable. As regenerative braking energy in railway systems has huge potential for optimized utilization, a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits. The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management. In this work, we propose a co-phase traction power supply system with super capacitor (CSS_SC) for the purpose of realizing the function of energy management and power quality management in electrified railways. Besides, the coordinated control strategy is presented to match four working modes, including traction, regenerative braking, peak shaving and valley filling. A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions. The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008% in simulation in contrast to 1.3% of the standard limit. With such a control strategy, the performance of super capacitor is controlled to comply with efficiency and safety constraints. Finally, a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3% and the daily load factor increased by 17.9%.

中文翻译:

电气化铁路带超级电容器储能的同相牵引供电系统的电源管理

铁路交通和能源利用问题的增加,促使电气化铁路系统更加经济,高效和可持续。由于铁路系统中的再生制动能量具有优化利用的巨大潜力,因此许多研究一直集中在如何有效利用能量和获得可持续利益上。能量存储系统是一种替代方案,因为它不仅可以处理再生制动能量,而且还可以消除负载功率曲线的剧烈波动并优化能量管理。为了实现电气化铁路的能源管理和电能质量管理功能,我们提出了一种具有超级电容器的同相牵引供电系统(CSS_SC)。此外,提出了协调控制策略以匹配四种工作模式,包括牵引力,再生制动,削峰和填谷。在MATLAB / Simulink中建立了相应的仿真模型,以验证所提出系统在动态工作条件下的可行性。结果表明,CSS_SC在处理四种不同的工作条件时具有灵活性,并且在模拟允许的0.008%的允许电压不平衡量(标准限值的1.3%)下可以实现节能。通过这种控制策略,可以控制超级电容器的性能以符合效率和安全性约束。最后,一个案例研究表明功率波动得到改善,谷值比降低了20.3%,日负载因子提高了17.9%。在MATLAB / Simulink中建立了相应的仿真模型,以验证所提出系统在动态工作条件下的可行性。结果表明,CSS_SC具有灵活的处理四种不同工作条件的能力,并且在模拟允许的0.008%的允许电压不平衡量(标准限值的1.3%)下可以实现节能。通过这种控制策略,可以控制超级电容器的性能以符合效率和安全性约束。最后,一个案例研究表明功率波动得到改善,谷值比降低了20.3%,日负载因子提高了17.9%。在MATLAB / Simulink中建立了相应的仿真模型,以验证所提出系统在动态工作条件下的可行性。结果表明,CSS_SC具有灵活的处理四种不同工作条件的能力,并且在模拟允许的0.008%的允许电压不平衡量(标准限值的1.3%)下可以实现节能。通过这种控制策略,可以控制超级电容器的性能以符合效率和安全性约束。最后,一个案例研究表明功率波动得到改善,谷值比降低了20.3%,日负载因子提高了17.9%。结果表明,CSS_SC具有灵活的处理四种不同工作条件的能力,并且在模拟允许的0.008%的允许电压不平衡量(标准限值的1.3%)下可以实现节能。通过这种控制策略,可以控制超级电容器的性能以符合效率和安全性约束。最后,一个案例研究表明功率波动得到改善,谷值比降低了20.3%,日负载因子提高了17.9%。结果表明,CSS_SC具有灵活的处理四种不同工作条件的能力,并且在模拟允许的0.008%的允许电压不平衡量(标准限值的1.3%)下可以实现节能。通过这种控制策略,可以控制超级电容器的性能以符合效率和安全性约束。最后,一个案例研究表明功率波动得到改善,谷值比降低了20.3%,日负载因子提高了17.9%。
更新日期:2020-02-28
down
wechat
bug