当前位置: X-MOL 学术Clim. Change › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessing the spatiotemporal impact of climate change on event rainfall characteristics influencing landslide occurrences based on multiple GCM projections in China
Climatic Change ( IF 4.8 ) Pub Date : 2020-06-11 , DOI: 10.1007/s10584-020-02750-1
Qigen Lin , Ying Wang , Thomas Glade , Jiahui Zhang , Yue Zhang

Landslides result in a significant number of casualties every year in China. The frequency and intensity of extreme precipitation are expected to increase due to climate change, leading to a change in landslide occurrence. This study focuses on climate change impacts on event rainfall characteristics that are commonly linked to landslide occurrence in China. A modelling framework was proposed to quantitatively assess the spatiotemporal change in event rainfall characteristics influencing landslide occurrences in China under future scenarios. First, an algorithm was used to extract the rainfall events from observed precipitation data and the 21 Global Circulation Models dataset. Then, the cumulative event rainfall-rainfall duration (E-D) threshold was identified and used as a proxy of landslide occurrence. Finally, the historical (1971–2000) and future (2031–2060 and 2066–2095) data of 21 GCMs were then applied to determine the E-D threshold in areas highly susceptible to landslides in China to assess the impact of climate change. Landslide occurrence is projected to increase potentially under all GCMs, by amounts ranging from 19.9% to 33.2% in the late 21st century compared to the historical period under the RCP4.5 and RCP85 scenarios, respectively. There are regional differences in the impact of climate change. Future landslide increases in the Northwest region and the Qinghai-Tibet region are the most significant, with consistency among multiple GCMs. However, there is only a slight increase in the South China region with high uncertainty. The monthly variations in landslides are bimodal, with the largest increases in spring and autumn. The results indicate that using a single GCM to assess climate change impacts may have biases, and consideration of median trends and variations among multiple GCMs is suggested. However, the study is a first hint on how climate change may affect landslide occurrence in the future, as the assessment of the effect of climate change on landslides is not straightforward based on only the precipitation-related proxy. The influence on air temperature and soil moisture and the selection of projection datasets and proxies should be carefully considered when applying the presented methods for climate change impacts on landslide studies.
更新日期:2020-06-11
down
wechat
bug