当前位置: X-MOL 学术Geotherm. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crystallization of calcium carbonate in a large-scale push–pull heat storage test in the Upper Jurassic carbonate aquifer
Geothermal Energy ( IF 4.2 ) Pub Date : 2020-02-05 , DOI: 10.1186/s40517-020-0160-5
Martina Ueckert , Carina Wismeth , Thomas Baumann

Crystallization of carbonates is a key process affecting the operation of geothermal facilities and aquifer heat storage systems. The crystals formed in an aquifer heat storage test in the Upper Jurassic carbonate aquifer were investigated at injection temperatures of $$65\,^{\circ }\hbox {C}$$ to $$110\,^{\circ }\hbox {C}$$, with varying $$\hbox {CO}_{2}$$ partial pressures, and varying Mg/Ca ratios. Water samples were directly filtrated, and analyzed by SEM/EDX. Complementary autoclave experiments were run. In the autoclave experiments with tap water, aragonite crystals dominated at all temperatures (45–110$$\,^{\circ }\hbox {C}$$). In the autoclave experiments with ultra-pure water, calcite crystals dominated at the same temperatures. In the field test, mainly calcite crystals were found up to temperatures of $$90\,^{\circ }\hbox {C}$$. Only at very high temperatures of $$110\,^{\circ }\hbox {C}$$ aragonite crystallization prevailed. $$\hbox {CO}_{2}$$ partial pressure varied especially between injection and production stages. Mg/Ca ratio varied through all stages, and depended on the dissolution of the rock matrix. Together with the autoclave experiments, this study suggest that temperature and Mg/Ca ratio had no influence on the crystallization, and only supersaturation affected the $$\hbox {CaO}_{3}$$ polymorphs. We further assume that we produced initially injected crystals back during the following production stage. That results in the assumption that existing particles can maintain an equilibrium in the dispersion, and reduce precipitation on surfaces like pipes and heat exchangers.

中文翻译:

上侏罗统碳酸盐岩含水层中大型推挽式蓄热试验中碳酸钙的结晶

碳酸盐的结晶是影响地热设施和含水层储热系统运行的关键过程。在注入温度为$ 65 \,^ {\ circ} \ hbox {C} $至$$ 110 \,^ {\ circ} \ hbox {的注入温度下,研究了上侏罗统碳酸盐岩含水层中含水层储热测试中形成的晶体。 C} $$,其中$$ \ hbox {CO} _ {2} $$分压不同,并且Mg / Ca比也不同。将水样品直接过滤,并通过SEM / EDX进行分析。进行补充高压釜实验。在用自来水进行高压灭菌的实验中,文石晶体在所有温度下均占主导地位(45–110 $$ \,^ {\ circ} \ hbox {C} $$)。在超纯水高压釜实验中,方解石晶体在相同温度下占主导地位。在现场测试中,主要发现方解石晶体的温度高达$ 90 \,^ {\ circ} \ hbox {C} $$。仅在$ 110 \,^ {\ circ} \ hbox {C} $$的非常高的温度下,文石结晶才盛行。$$ \ hbox {CO} _ {2} $$分压尤其在注入和生产阶段之间变化。镁/钙比在所有阶段均变化,并取决于岩石基质的溶解。结合高压釜实验,该研究表明温度和Mg / Ca比对结晶没有影响,只有过饱和会影响$$ \ hbox {CaO} _ {3} $$多晶型物。我们进一步假设我们在随后的生产阶段中又生产了最初注入的晶体。这导致了这样一个假设,即现有粒子可以在分散体中保持平衡,并减少在管道和热交换器等表面上的沉淀。$$ \ hbox {CO} _ {2} $$分压尤其在注入和生产阶段之间变化。镁/钙比在所有阶段均变化,并取决于岩石基质的溶解。结合高压釜实验,该研究表明温度和Mg / Ca比对结晶没有影响,只有过饱和会影响$$ \ hbox {CaO} _ {3} $$多晶型物。我们进一步假设我们在随后的生产阶段中又生产了最初注入的晶体。这导致了这样一个假设,即现有粒子可以在分散体中保持平衡,并减少在管道和热交换器等表面上的沉淀。$$ \ hbox {CO} _ {2} $$分压尤其在注入和生产阶段之间变化。镁/钙比在所有阶段均变化,并取决于岩石基质的溶解。结合高压釜实验,该研究表明温度和Mg / Ca比对结晶没有影响,只有过饱和会影响$$ \ hbox {CaO} _ {3} $$多晶型物。我们进一步假设我们在随后的生产阶段中又生产了最初注入的晶体。这导致了这样一个假设,即现有粒子可以在分散体中保持平衡,并减少在管道和热交换器等表面上的沉淀。结合高压釜实验,该研究表明温度和Mg / Ca比值对结晶没有影响,只有过饱和会影响$$ \ hbox {CaO} _ {3} $$多晶型物。我们进一步假设我们在随后的生产阶段中又生产了最初注入的晶体。这导致了这样一个假设,即现有颗粒可以在分散体中保持平衡,并减少在管道和热交换器等表面上的沉淀。结合高压釜实验,该研究表明温度和Mg / Ca比对结晶没有影响,只有过饱和会影响$$ \ hbox {CaO} _ {3} $$多晶型物。我们进一步假设我们在随后的生产阶段中又生产了最初注入的晶体。得出这样的假设:现有颗粒可以在分散体中保持平衡,并减少在管道和热交换器等表面上的沉淀。
更新日期:2020-02-05
down
wechat
bug